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Communicated by A. Schäfer

Abstract. The multiscattering problem is studied in the matrix density formalism. We study how to isolate
the quasi-classical degrees of freedom in order to connect them with a cascade approach. The different
problems that arise, as well as their possible solutions, are discussed and exemplified with a pion-nucleus
model.
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1 Introduction

The multiscattering problem is hard to solve in a fully
quantum-mechanical context. Consider, for instance, in-
clusive pion-nucleus scattering, which will be our model
system. Around the ∆(3, 3) resonance several channels
are open, besides the elastic one: absorption of the pion,
inelastic, single charge exchange and double charge ex-
change. Some reactions can take place several times for
the pion inside the nucleus. All the reactions interfere
with each other and their typical reaction probabilities
are strongly dependent on the region of the nucleus. Cas-
cade methods [1], which reduce the complicated looking
output of the reaction to simple steps, seem appropri-
ate to deal with such a problem. However, cascade meth-
ods often involve drastic semi-classical simplifications not
completely under control. Typically the reaction proba-
bilities are taken from the free cross-section or at most
Pauli blocking is included (and as a consequence are one-
body mechanisms) and a classical propagation is used in
between two collisions. Even so, the potential ability to
embody known physics of the problem and the versatility
of the cascade approach makes it interesting to study how
it could be improved to systematically include quantum
corrections.

Cascade methods have been widely used in the context
of heavy-ion collisions, where one wants to describe the
dynamical evolution of a large number of particles. In the
crudest approach only two-body collisions of free particles
are considered, without any mean-field effect [2,3]. Com-
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plementary to this is the hydrodynamic approach or the
more sophisticated time-dependent Hartree-Fock method,
where the mean field is well described but collisions are
neglected [4,5]. Both models are merged into microscopic
kinetic or transport models. Particularly successful has
been the Boltzmann-Uehling-Uhlenbeck (BUU) equation
which embodies mean-field effects, two-body collisions and
Pauli blocking [6–8]. Transport models go back to Boltz-
mann and are widely used in physics of plasmas of all
kinds [9]. (See [10–18] for reviews on the transport theory
approach from different points of view.) In heavy-ion col-
lisions, microscopic transport models are applied not only
to nucleons but also to mesons (in particular pions) and
resonances [19]. Transport models have also been used di-
rectly for studying pion-nucleus reactions [20–26] or other
meson-nucleus reactions [27].

In the classical kinetic theory the basic quantity is
the distribution function in phase space, f(x,p, t), which
satisfies a transport equation of the type gain-loss as in
eq. (1.3) below. It has long been recognized that the
Wigner transform [28,29] is the natural way to derive a
quantum transport equation [9,11,30,31]. The subject has
been brought to a high degree of sophistication, as needed
for instance in the description of quark-gluon plasmas,
where it has to include thermal effects, be consistent with
relativistic invariance as well as covariance under non-
Abelian gauge transformations [10,14,32–35]. The field of
quantum transport theory is currently quite active and
with many open issues, both of conceptual and of practi-
cal interest [9].

The mark of cascade models is the classical propaga-
tion of the particles between two collisions. This, which at
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first sight may be considered as a drawback, could also be
one of their main virtues, for this quasi-classical propaga-
tion does indeed exist, furthermore it is dominant between
two well-separated successive collisions. Consider, for in-
stance, the following form of the uncertainty principle:

|∆t| ≈ h̄

|E − Eon-shell(p)| , (1.1a)

|∆x| ≈ h̄

|p − pon-shell(E)| . (1.1b)

These relations show that only on-shell states can propa-
gate a long time or distance, and that these long-lasting
states can be taken as classical in the sense that only they
survive as h̄ if formally taken to zero. Furthermore, from
eqs. (1.1) one finds for large ∆t,∆x∣∣∣∣∆x

∆t

∣∣∣∣ ≈
∣∣∣∣dEdp

∣∣∣∣
on-shell

, (1.2)

which is the classical Hamilton’s equation. This crude ar-
gument can be made more precise once a definite pre-
scription is chosen to simultaneously use conjugate vari-
ables such as (t, E) or (x,p) in the quantum-mechanical
context, for instance, Wigner’s prescription. Of course,
eqs. (1.1) only hold as long as interaction does not take
place, but they show the existence of two scales in the
multiscattering problem: one due to the mean free path of
classical states and the other due to the uncertainty princi-
ple, i.e., propagation of virtual states. Multiscale problems
usually make trouble to approaches which fail to explicitly
include such a feature. It seems more promising to divide
the problem into two parts: first, the quasi-local virtual
states are integrated out in such a way that the elementary
vertices of the microscopic theory are substituted by clas-
sical effective N -body quasi-elastic plus absorption proba-
bilities, and second, these probabilities are then used in a
cascade approach, where only quasi-classical states show
up explicitly.

In order to clarify the meaning of the rather abstract
program above, we should place it in the appropriate con-
text. One of our motivations has been to understand and
justify the success of the approach in [24,25]. There, all
the pion-nucleus inclusive reactions are computed along
the following lines: the pion self-energy is computed in
nuclear matter including all the Feynman graphs consid-
ered relevant for energies around the resonance. The imag-
inary part of this self-energy is then considered as a pion
“width” against decay of the elastic channel into reaction
states. With the help of a local density prescription, the to-
tal reaction cross-section is then calculated. Furthermore,
use is made of Cutkosky rules [36,37] in order to sep-
arate the reaction width into the several reaction chan-
nels, namely, absorption and quasi-elastic (with or with-
out charge exchange). This information is then used in a
Monte Carlo simulation of the path of the pion inside the
nucleus: the pion is treated classically in between collisions
but the reaction probabilities are computed microscopi-
cally from Feynman graphs. Several questions arise from
this rather intuitive approach, such as how does it follow

from a purely quantum-mechanical calculation?, how can
the classical and local density approximations be system-
atically improved? how to avoid double counting between,
say, a genuine three-body absorption mechanism included
in the microscopic calculation and a quasi-elastic followed
by a two-body absorption coming from the Monte Carlo
simulation, having both the same final state? The Monte
Carlo simulation for the pion can be cast in the form of a
transport equation,

∂tf(x,p, t) =
∫

d3x′ d3p′Q(x,p;x′,p′)f(x′,p′, t)

−R(x,p)f(x,p, t) , (1.3)

where Q(x,p;x′,p′) represents the unit time probability
for the transition (x′,p′) → (x,p) in phase space and
R(x,p) is the probability of leaving the state (x,p). Q
contains both elastic and quasi-elastic processes, while R
is the total reaction rate. The absorption rate is, thus,

A(x,p) = R(x,p)−
∫

d3x′ d3p′Q(x′,p′;x,p). (1.4)

Then, which are exactly the kernels R, Q, if any, that
will produce the same cross-sections as the Schrödinger
equation does? Note that we shall actually deal with just
one particle cascading through the nucleus so f(x,p, t)
is the probability density in phase space rather than the
real density as in standard kinetic theory of plasmas. The
equation is however formally identical to a transport equa-
tion.

In this work we address those issues. Our main concern
has been to write exact quantum-mechanical equations
in such a way that the connection with cascade methods
were immediate. To this end, a density matrix formal-
ism is used plus Wigner’s prescription, in order to achieve
a well-defined classical limit. The Wigner transformation
has been applied before in the literature to study scatter-
ing, most notably by Remler in a series of papers [38–41].
Our emphasis is, however, different since we are interested
in isolating the N -body quasi-elastic and absorption rates
seen by a quasi-classical particle so that the correct quan-
tum results are recovered in a cascade model.

We shall not be concerned here with relativistic in-
variance (although relativistic kinematics is allowed and
actually used in applications involving pions at intermedi-
ate energy), thermal effects, or gauge invariance, however,
we shall find that some of the findings in these more so-
phisticated fields are also of interest here. We shall find
that a full Wigner transform, in space and also in time,
is needed in order to include inelastic channels, a point
not usually realized in non-relativistic applications of the
Wigner transform to collision theory.

As we have said practical cascade models are often very
simplified from the many-body point of view. Typically,
one deals with classical particles moving in a mean-field
potential, and classical collisions using in-vacuum cross-
sections or decaying width in-vacuum lifetimes, restricted
by Pauli blocking in the final states. This procedure mim-
ics at a classical level the evolution described by Feynman
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graphs. The problem with a direct diagrammatic approach
is, of course, that a realistic description would require to
carry out the computation to graphs of arbitrarily high or-
ders. The cascade method aims at an efficient procedure
to carry out a resummation of those graphs, at the price
of a classical description. To improve on this approach
it would be interesting to make a formulation using ex-
act relations between resummed sets of graphs, much in
the line of the kinetic Kadanoff-Baym or the Schwinger-
Dyson equations, but with an explicit h̄-dependence and
within a space-time framework, and then find a prescrip-
tion to integrate out the virtual, non-classical, intermedi-
ate states. The improvement of this approach resides in
the fact that, once precise definitions for the effective re-
action probabilities are given, one is no longer constrained
to use in-vacuum estimations for them and, in principle,
many-body effects can consistently and systematically be
included. This work should be regarded as an attempt in
this direction. Within a particular simplified model we try
to implement the previous program. In doing so, we intro-
duce ideas, some of them hopefully new, that presumably
will be present in future, more systematic, developments.

The paper is organized as follows: in sect. 2 we show
that indeed knowledge of the evolution of the density ma-
trix in the Wigner’s form, taken as a density of classical
projectiles, gives rise to the correct quantum-mechanical
cross-section. In sect. 3 the one-particle system is studied
with emphasis on its Wigner’s form and the classical limit.
In sect. 4 the same analysis is carried out for a particle in
an optical potential, i.e., for the elastic channel. Section 5
is devoted to the general many-body evolution equation
exemplified with a simple pion-nucleus model, with only
pions and particle-hole (ph) excitations as physical degrees
of freedom. Section 6 shows how the ph degrees of free-
dom can be removed in order to obtain a purely pionic
evolution equation. In sect. 7 the virtual pionic degrees
of freedom are identified and integrated out in order to
obtain effective N -body quasi-elastic rates. In sect. 8 the
actual outcome of our scheme is illustrated in simple cases.
Finally in sect. 9 we summarize our conclusions.

2 Cross-section in the simulation approach

In this section we shall assume that the proper simu-
lation procedure has already been carried out (how to
do that will be the subject of subsequent sections) and
our present purpose is to show that in this case the cor-
rect fully quantum-mechanical cross-section is obtained
by the usual method. We start by relating the S-matrix
in Wigner’s representation to the cross-section, and later
contact will be taken with the time evolution operator
which is closer to an actual simulation procedure.

Let us assume that the Monte Carlo simulation gives
us directly the ρ̂in, ρ̂out relationship

ρ̂out = Ŝ ρ̂in Ŝ
†, (2.1)

where ρ̂ is the density matrix and Ŝ is the scattering ma-
trix. Then we shall have

ρout(u) =
∫

d6v S(u, v)ρin(v). (2.2)

Here u, v are points in the phase space (x,p), d6v =
d3xv d3pv, ρ(u) is the density matrix in Wigner’s form [28–
31]

ρ(x,p) =
∫

d3y e−iy·p/h̄
〈

x +
1
2
y

∣∣∣∣ρ̂
∣∣∣∣x − 1

2
y

〉
(2.3)

and S(u, v) is a real function related to the Wigner’s form
of Ŝ to be interpreted below as the “probability” density
of going from v to u in phase space.

The cross-section from some initial state |i〉 to some
final state |f〉 is (see, for instance, [42])

σ(i→ f) =
∫

d2b
∣∣∣〈f ∣∣Ŝ e−iP̂ ·b/h̄∣∣i〉∣∣∣2, (2.4)

b being the impact parameter vector and P̂ the momen-
tum operator. In addition |i〉, |f〉 represent normalized
initial and final states [42]. Using the property of the
Wigner’s representation

tr
(
X̂Ŷ

)
=

∫
d6u

(2πh̄)3
X(u)Y (u) (2.5)

the cross-section can be rewritten as

σ(i→ f) =
∫

d2bd3xd3p
d3x′ d3p′

(2πh̄)3
ρf (x′,p′)

×S(x′,p′;x,p)ρi(x − b,p) . (2.6)

Now for |f〉 we take a plane wave with momentum pf

ρf (x,p) = (2πh̄)3δ(p − pf ). (2.7)

This, of course, spoils the dimensional counting, but that
will be fixed later:

σ(i→ pf ) =
∫

d2bd3x′ d3xd3p

×S(x′,pf ;x + b,p)ρi(x,p). (2.8)

The next step is to use that the fine details of the projectile
wave function are not relevant, i.e. only its momentum
distribution matters. This allows us to rewrite (2.8) in the
form

σ(i→ pf ) =
∫

d2bd3x′ d3pS(x′,pf ; b,p)

×
∫

d3xρi(x,p). (2.9)

Equation (2.9) follows from eq. (2.8) provided

∇x

∫
d2bd3x′S(x′,pf ;x + b,p) = 0. (2.10)
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Physically this is clearly true: the integration on b projects
out the x⊥-dependence. Furthermore, varying x‖ amounts
to a change in the initial position of the projectile along
the same incoming trajectory, but that only shifts x′ which
is integrated out. A proof of (2.10) is given in appendix A.

Then for |i〉 normalized, but with a narrow momentum
distribution, we can take∫

d3xρi(x,p) = ρi(p) ≈ (2πh̄)3δ(p − pi) (2.11)

and so

σ(pi → pf ) = (2πh̄)3
∫

d2bd3x′S(x′,pf ; b,pi). (2.12)

The correct dimensions are recovered by integrating pf

within a solid angle dΩf

dσ(pi→ p̂f )
dΩf

=
∫

dpfp2f d2bd3x′S(x′,pf ; b,pi). (2.13)

This is the desired relationship between cross-section and
Monte Carlo output: to obtain dσ/dΩ several projec-
tiles with random impact parameter, represented by the
integration over b, should be thrown against the tar-
get, the simulation procedure (contained in the function
S(x′,pf ; b,pi)) will put them in (x′,pf ) after the interac-
tion, but only the scattering angle is relevant (represented
by the integration over x′ and pf ). S(x′,pf ; b,pi) can then
be identified with the density probability of going from
(b,pi) to (x′,pf ) due to the interaction. It can be noted,
however, that this “probability density” is not necessarily
positive. Positivity is only required for the cross-section,
i.e., after integration. Likewise in general, conservation of
energy |pf | = |pi| is only achieved after integration over
b and x′.

Another remark is in order regarding (2.13). Unitarity
of Ŝ (or also eq. (2.2)) implies∫

d6uS(u, v) = 1, (2.14)

then a direct use of (2.13) yields

∫
dΩf

dσ(pi → p̂f )
dΩf

=
∫

d2b = ∞. (2.15)

As usual, this means that the non-interacting part of Ŝ
must be removed from the cross-section

S(u, v) = Z(u)δ(u− v) + T (u, v), (2.16)

where T is less singular than δ(u − v) and represents the
scattering probability, while Z(u) is the non-interaction
probability. T instead of S should be used in (2.13)
(whether Ŝ is unitary or not).

The Ŝ-matrix is a convenient theoretical tool but ac-
tually the simulation procedure is more directly related to

the evolution operator rather than the Ŝ-matrix: a projec-
tile is sent and the outgoing distribution is observed much
later. This is described by

ρ̂t2 = e−i(t2−t1)Ĥ/h̄ρ̂t1e
i(t2−t1)Ĥ/h̄;

−t1, t2 → +∞. (2.17)

In Wigner’s form we then have

ρ(u, t2) =
∫

d6v U(u, v; t2 − t1)ρ(v, t1). (2.18)

It has to be shown that for large t = t2−t1, U(u, v; t) does
the same job as S(u, v) did in (2.13). For large enough t

e−i(t2−t1)Ĥ/h̄ ≈ e−it2Ĥ0/h̄Ŝeit1Ĥ0/h̄ = e−itĤ0/h̄Ŝ, (2.19)

where Ĥ0, Ĥ represent the free and full Hamiltonians,
respectively, and we have used the well-known property
[Ĥ0, Ŝ] = 0 [42,43]. This allows to relate the two functions
S(u, v) and U(u, v; t) as in eq. (A.2), namely,

U(x′,p′;x,p; t) ≈∫
d3y d3q

(2πh̄)3
eiq·(x

′−y)/h̄−i (H0(p
′+ 1

2 q)−H0(p
′− 1

2 q))t/h̄

×S(y,p′;x,p). (2.20)

Now, if U is used in (2.13) instead of S, the x′ integration
gives q = 0 and the result is the same, that is,

dσ(pi→ p̂f )
dΩf

=
∫

dpfp2f d2bd3x′U(x′,pf ; b,pi; t). (2.21)

Once again, the non-interaction probability is to be re-
moved from U . Also note that the result does not depend
on t since q vanishes in (2.20) after x′ integration. This
requires t to be large so that (2.19) holds.

Let us summarize the outcome of this section. A
simple-minded method to obtain the cross-section would
be: 1) to compute the kernel of the evolution equation,
U(u, v; t); 2) to use it in a simulation procedure as a tran-
sition probability density from the point v in phase space
at time t1 to the point u at t2; 3) to count the outgoing par-
ticles to extract the cross-section as in a real experiment.
What has been shown here is that the naive expectation is
indeed correct. Note that we use “simulation procedure”
to mean a method solving an equation like (2.18). The
fact that U(u, v; t) will not be positive definite in general
can be a technical problem but the equation itself is well
defined.

3 The single-particle evolution equation

In this section we review the simplest case of a one-particle
system and its connection with a classical description.

Let us construct eq. (1.3) for a single-particle system,
with Hamiltonian Ĥ. We start with the density matrix
evolution equation

ih̄
dρ̂
dt

=
[
Ĥ, ρ̂

]
(3.1)
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and rewrite it using the Wigner transformation, as de-
fined in (2.3), to eventually consider its classical limit.
The product of two operators can be dealt with by means
of the identity

(
ÂB̂

)
(x,p) =

∫
d3y d3q

(πh̄)3
d3z d3k

(πh̄)3
A(y, q)B(z,k)

×ei2(q−k)·x/h̄

×ei2(k−p)·y/h̄ei2(p−q)·z/h̄, (3.2)

where the left-hand side stands for the Wigner’s form of
ÂB̂ at (x,p). This can be written more compactly using
the notation (simplectic scalar product)

u ∧ v = −v ∧ u = x · q − y · p,
u = (x,p), v = (y, q), (3.3)

as(
ÂB̂

)
(u)=

∫
d6v

(πh̄)3
d6w

(πh̄)3
A(v)B(w)ei2(v−u)∧(w−u)/h̄. (3.4)

In order to study the classical limit, we should transform
this expression into one with better properties as h̄ goes
to zero. To this end we use the identity (in one dimension)

eixp/h̄ = 2πh̄ eih̄∂x∂pδ(x)δ(p), (3.5)

where the exponential in the right-hand side is to be ex-
panded as a series of powers of h̄. This identity can be
established by considering both sides as distributions on
eiax as test function, for arbitrary a. It can immediately
be extended to any number of dimensions, and also

eiu∧v/h̄ = (2πh̄)6 eih̄∂u∧∂vδ(u)δ(v). (3.6)

Then (3.4) can be cast in the form

(
ÂB̂

)
(u) =

∫
d6v

(πh̄)3
d6w

(πh̄)3
A(u+ v)B(u+ w)(πh̄)6

e
1
2 ih̄∂v∧∂wδ(v)δ(w)

= e
1
2 ih̄∂v∧∂wA(u+ v)B(u+ w)

∣∣∣∣
v=w=0

, (3.7)

or simply [44](
ÂB̂

)
(u) = e

1
2 ih̄∂

(A)
u ∧∂(B)

u A(u)B(u). (3.8)

Expanding in powers of h̄ yields(
ÂB̂

)
(u) = A(u)B(u) +

ih̄

2
{A(u), B(u)}P + · · · . (3.9)

The zero-th order shows that operators commute in the
classical limit and the first correction introduces the usual
Poisson bracket, {A,B}P = ∂A ∧ ∂B.

The evolution equation for ρ(u, t), eq. (3.1), takes the
form

ih̄
∂ρ(u, t)
∂t

=
(
e

1
2 ih̄∂

(H)∧∂(ρ) − e
1
2 ih̄∂

(ρ)∧∂(H)
)

×H(u)ρ(u, t) (3.10a)

= 2i sin
(

1
2
h̄∂(H)∧∂(ρ)

)
H(u)ρ(u, t).

(3.10b)

At lowest order in h̄ we find

∂ρ

∂t
= {H, ρ}P +O(h̄2), (3.11)

which is the classical equation of evolution in phase space.
This equation is also referred to as the Liouville equation
in mechanics, the Vlasov equation in plasma physics (par-
ticularly when the particles move coupled to an electro-
magnetic field), or (collisionless) transport equation in the
context of kinetic theory. Correspondingly, eq. (3.10b) is
the quantum transport equation. The approach of using
the Wigner transformation to derive a quantum transport
equation has become standard [31] and has been extended
in various ways, including finite-temperature [14,32] rel-
ativistic treatments [45,46], Abelian and non-Abelian
gauge covariant definitions of the Wigner function as well
as second quantization definitions of a Wigner opera-
tor [10].

For subsequent developments, it will be convenient to
consider also the more general case of a non-Hermitian
Hamiltonian Ĥ = ĤR+iĤI. The new evolution equation is

ih̄
dρ̂
dt

= Ĥρ̂− ρ̂Ĥ†, (3.12)

and the corresponding equation in Wigner’s form would be

∂tρ(u, t)

=
2
h̄

cos
(

1
2
h̄∂(H) ∧ ∂(ρ)

)
HI(u)ρ(u, t)

+
2
h̄

sin
(

1
2
h̄∂(H) ∧ ∂(ρ)

)
HR(u)ρ(u, t)

=
2
h̄
HI(u)ρ(u, t) + {HR(u), ρ(u, t)}P +O(h̄). (3.13)

Throughout this section we have used the classical
limit in a rather formal manner. The problem of fixing
the h̄-dependence in an expression is not a trivial or even
well-defined one. In practice, our point of view has been
to adopt the Wigner’s form of an operator as that with
a smooth classical limit or plainly as that without any
h̄-dependence at all. However, it is clear that this can-
not be true for all operators1. After all h̄ is not small, it is
rather unity in natural units. The classical limit should be
understood as a physical limit of small fluctuations. De-
pending of the system this may correspond to large times
or distances, large momenta or energies, weak coupling (or
sometimes strong coupling), low densities or large number
of degrees of freedom, among others.

1 Assume, for instance, that ρ(x, p), constructed out of some
ρ̂, is non-zero only in two localized regions of the phase space
such that in one of them it is positive and is negative in the
other. The positive region should be larger than O((2πh̄)3) due
to the uncertainty principle, while the negative one can be at
most of size O((2πh̄)3) since ρ̂ is a positive operator. If we were
to reconstruct ρ̂ using a different value for h̄ it could not be
very different in order to satisfy both constraints.
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4 Evolution equation and optical potential

In this section, we extend the study of the evolution equa-
tion for the density matrix and its classical limit by in-
cluding some many-body effects by means of an optical
potential. Let us consider the following energy-dependent
Hamiltonian:

Ĥ(E) = Ĥ0 + V̂opt(E), (4.1a)

V̂opt(E) = −
∫

dE′

π

V̂I(E′)
E − E′ + iη

. (4.1b)

H0 is energy independent and Hermitian, and contains the
free and Hartree-Fock pieces of the particle self-energy. On
the other hand, V̂opt(E) is energy dependent and hence
non-Hermitian and non-instantaneous, and contains the
intermediate states not in the elastic channel. iV̂I denotes
the anti-Hermitian part of V̂opt. This is the absorptive part
of the optical potential and is non–positive-definite.

The Schrödinger equation in this case takes the form

E|E〉 = Ĥ(E)|E〉, (4.2)

or in time representation

ih̄∂t|ψ, t〉 =
∫

dτ ĥ(τ)|ψ, t− τ〉, (4.3)

where

|ψ, t〉 =
∫

dE
2πh̄

e−iEt/h̄ψ(E)|E〉, (4.4)

ĥ(τ) =
∫

dE
2πh̄

e−iEτ/h̄Ĥ(E)

= δ(τ)Ĥ0 +
i

πh̄
θ(τ)

∫
dE e−iEτ/h̄V̂I(E) . (4.5)

The non-locality in time in (4.3) comes from non-elastic
intermediate states represented by the optical potential.
As in the previous section, we would like to construct an
evolution equation for ρ̂(t) = |ψ, t〉〈ψ, t|, however, it is
easy to see that ρ̂(t) does not satisfy an autonomous equa-
tion2. The problem is that ρ̂(t) does not actually contain
the same information as |ψ, t〉 does; it loses track of the
phases. This would be irrelevant if |ψ, t〉 were the wave
function of the whole system, but it is not: it only de-
scribes the elastic part. Instead, we have to consider the
more general set of operators

ρ̂(t, t′) = |ψ, t〉〈ψ, t′|, (4.6)

as well as their Wigner’s transformed (in time energy)

ρ̂(t, E) =
∫

dτ eiEτ/h̄ρ̂

(
t+

1
2
τ, t− 1

2
τ

)
, (4.7)

2 To see this, consider arbitrarily changing the phases of |ψ, t〉
for all times t before some t0. Clearly this manipulation does
not affect ρ̂(t) for t < t0, however, due to the non-locality in
time in (4.3), the evolution of |ψ, t〉 and ρ̂(t) will be modified
after t0. This shows that ρ̂(t) does not satisfy an autonomous
evolution equation.

which are Hermitian. Note that the equal-time density
matrix is recovered through energy integration

ρ̂(t) =
∫

dE
2πh̄

ρ̂(t, E). (4.8)

Similarly, we define the Wigner transform of the Hamilto-
nian Ĥ (with Ĥ(t, t′) := ĥ(t− t′))

Ĥ(t, E) = Ĥ(E). (4.9)

In order to write an evolution equation for ρ̂(t, E), it is
more convenient to start with the energy representation

E|E〉 = Ĥ(E)|E〉, (4.10a)
ρ̂(E1, E2) = |E1〉〈E2|, (4.10b)

so that

E1ρ̂(E1, E2) = Ĥ(E1)ρ̂(E1, E2), (4.11a)

E2ρ̂(E1, E2) = ρ̂(E1, E2)Ĥ†(E2). (4.11b)

Subtracting both equations and using the notation E =
1
2 (E1 + E2), ω = E1 − E2 and ρ̂(ω,E) = ρ̂(E1, E2), we
obtain

ωρ̂(ω,E) = Ĥ

(
E +

1
2
ω

)
ρ̂(ω,E)

−ρ̂(ω,E)Ĥ†
(
E − 1

2
ω

)
, (4.12)

which can also be written in terms of ρ̂(t, E) by Fourier
transforming ω:

ih̄∂tρ̂(t, E) = e
1
2 ih̄∂

(ρ)
t ∂

(H)
E Ĥ(E)ρ̂(t, E)

−e− 1
2 ih̄∂

(ρ)
t ∂

(H)
E ρ̂(t, E)Ĥ†(E). (4.13)

This is the evolution or transport equation in the presence
of an optical potential. It is an autonomous equation for
ρ̂(t, E) as a function of t because, as a consequence of en-
ergy conservation, no energy derivatives of ρ̂ appear in it.
Note that if we take the “classical” limit in the right-hand
side by taking the explicit h̄→ 0, eq. (3.12) is recovered.

Equation (4.13) has been written using a partial
Wigner form, namely, in time energy. It can be further
expanded by using the full space-time Wigner’s transfor-
mation (in time energy and position momentum). This
yields the following more symmetrical form of the trans-
port equation which generalizes eq. (3.10a):

ih̄∂tρ(u) = e−
1
2 ih̄∂

(H)
u ∧∂(ρ)

u H(u)ρ(u)

−e 1
2 ih̄∂

(H)
u ∧∂(ρ)

u ρ(u)H†(u), (4.14)

where now u denotes (t,x;E,p), and u∧ v = tE′ −Et′ −
x·p′+p·x′. This formula holds actually for a general non-
conservative and non-instantaneous Hamiltonian Ĥ(t, E).
In what follows we will not, in general, expand the for-
mulas by expliciting the position momentum part of the
Wigner transform.
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As it stands, (4.13) is of little usefulness since it is
non-local in time and so all the time derivatives of ρ̂ will
contribute to the first one. Fortunately, the expansion in
powers of h̄ can be used to bypass this undesirable feature.
First let us expand eq. (4.13) using the separation Ĥ(E) =
Ĥ0 + V̂R(E) + iV̂I(E),

ih̄∂tρ̂ =
[
Ĥ0 + V̂R, ρ̂

]
− +

[
iV̂I, ρ̂

]
+

+
[
∂E V̂R,

ih̄

2
∂tρ̂

]
+

+
[
i∂E V̂I,

ih̄

2
∂tρ̂

]
−

+
1
2

[
∂2
E V̂R,

(
ih̄

2

)2

∂2
t ρ̂

]
−

+
1
2

[
i∂2

E V̂I,

(
ih̄

2

)2

∂2
t ρ̂

]
+

+ · · · , (4.15)

where [ , ]−, [ , ]+ stand for commutator and anticommu-
tator, respectively. Then, let us demand that there exist
a classical limit at all for ∂tρ(x,p; t, E). The first term in
the right-hand side of (4.15) poses no problem because it
is of order h̄ due to the commutator (cf. (3.9)). Analo-
gously the third- and higher-order terms have explicit h̄
in them. So, we will require

V̂I = O(h̄) (4.16)

for ∂tρ to exist in the limit h̄→ 0. Note that this implies
V̂R = O(h̄) too, due to (4.1b). Under this assumption, it
follows that the first and the second terms in eq. (4.15) are
O(h̄). The third term is O(h̄2). The fourth term is O(h̄3),
and the others are O(h̄4) and O(h̄3). In general, higher-
order time derivatives of ρ̂ appear only at higher order
in h̄. This allows to express ∂tρ̂ in terms of ρ̂(t, E) only
(without time derivatives) at any given order in h̄: ∂tρ̂
in the third and fourth terms are eliminated using (4.15)
recursively, ∂2

t ρ̂ in the fifth and sixth terms are eliminated
by applying (ih̄∂t) once to (4.15), etc. Explicitly, through
second order, we obtain

ih̄∂tρ̂=
[
Ĥ0, ρ̂

]
−+i

[
V̂I, ρ̂

]
+
+

[
V̂R, ρ̂

]
−

+
1
2
[
∂E V̂R,

[
Ĥ0, ρ̂

]
−+i

[
V̂I, ρ̂

]
+

]
+
+O(

h̄3
)
. (4.17)

This expansion is expected to be only asymptotic. In what
follows we will not, in general, explicitly expand the equa-
tions to put them in a manifestly instantaneous form, as
done here, but this procedure can be carried out if needed.

It is worth noticing that the real part of the optical
potential V̂R, only appears at higher order than the free
Hamiltonian Ĥ0 or the absorptive part of V̂I. In many cas-
cade calculations only V̂I is used, (i.e., the cross-section).
Equation (4.17) indicates that this is a kind of classical
approximation.

As we have seen, the relation (4.16) is needed in order
for eq. (4.17) to make sense. Its origin is clearer if V̂opt is
considered as a self-energy in many-body language [47].
From eq. (4.1) the Hartree pieces are included in Ĥ0 and

then V̂opt contains only self-energy pieces with loops, the
only diagrams with imaginary part. As shown in [48], each
loop gives a further power in h̄ to a diagram, consistently
with eq. (4.16).

Let us consider the propagation of a particle in infi-
nite nuclear matter. Due to translational invariance, all
relevant operators are functions of the momentum and
commute among them (internal degrees of freedom are
neglected here). In this case (4.17) becomes

∂tρ(t, E) = −Γ (E)
h̄

ρ(t, E), (4.18)

where Γ (E) = O(h̄) is the width and is given as a power
series in h̄. A closed form is more easily obtained directly
from (4.12)

−iΓ (E) = H

(
E − 1

2
iΓ

)
−H†

(
E +

1
2
iΓ

)
. (4.19)

From here, expanding in h̄, the well-known quasi-particle
result [47]

Γ (E) ≈ −2Z(E)VI(E), (4.20a)
Z(E) = (1− ∂EVR(E))−1 (4.20b)

appears at order h̄2.
It can be noted that from the two equations (4.11) we

have extracted only one equation, namely, (4.12). Taking
the semi-sum instead of the difference in (4.11), one ob-
tains

Eρ̂(t, E) =
1
2
e

1
2 ih̄∂

(ρ)
t ∂

(H)
E Ĥ(E)ρ̂(t, E)

+
1
2
e−

1
2 ih̄∂

(ρ)
t ∂

(H)
E ρ̂(t, E)Ĥ†(E), (4.21)

which is a kind of energy shell constraint equation [9,10].
At lowest order in h̄, in the full Wigner form, it just says
that E = H(u), i.e., the density matrix is on-shell. By
construction this equation is consistent with the trans-
port equation (4.13). In fact, using again an asymptotic
expansion in h̄, we can put this equation in instantaneous
form. The lowest orders are

Eρ̂ =
1
2
[
Ĥ0, ρ̂

]
+

+
1
2
[
V̂R, ρ̂

]
+

+
i

2
[
V̂I, ρ̂

]
−

+
i

4
[
∂E V̂I,

[
Ĥ0, ρ̂

]
− + i

[
V̂I, ρ̂

]
+

]
+

+O(
h̄3

)
. (4.22)

If the transport and constraint equations are written as
∂tρ̂ = Ltρ̂ and Eρ̂ = LE ρ̂, with the linear actions Lt and
LE defined by (4.17) and (4.22), respectively, the compat-
ibility amounts to the statement [Lt, LE ] = 0, which can
be verified also by explicit calculation to the order shown.

As often emphasized, the two equations, transport and
constraint, are needed for a proper description of the
evolution [9,10,14,33,34]. In the next sections we will
also make use of two equations, however, our approach
will involve a different set of kinematic equations, (5.13)
and (5.15), or (6.11) and (6.13). This is further discussed
at the end of sect. 7.
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An equal-time density matrix is often used in non-
relativistic transport equations [38]. In the relativistic
case the equal-time formulation can also be used [49] but
Lorentz invariance is only manifest by using the space-
time Wigner transform [9]. As discussed in [33,34] both
formulations are equivalent without introducing further
approximations, the space-time formulation being never-
theless richer since it contains the energy distribution [33,
34].

The equivalence of the two approaches (equal time vs.
time energy Wigner distribution functions) holds when-
ever the Hamiltonian is instantaneous, that is, whenever
H(u) is independent of E. This follows from integrating
over the energy in (4.14) (a procedure named energy aver-
aging in [33,34]), recalling the relation (4.8) between the
two density matrices, and noting that ∂E acts only on
ρ(u) (it is not necessary to assume that the Hamiltonian
is conservative, H(u) may depend on t). The situation for
a non-instantaneous dynamics is different and it requires
the use of the space-time form, as done here. This is not
related to relativity but rather to the fact that the parti-
cle can leave the elastic channel and spend some time in
other inelastic intermediate states before returning to the
elastic Hilbert space. In this case to derive an autonomous
evolution equation for the equal-time density matrix is no
longer straightforward. We will deal with a closely related
problem in sect. 7.

5 Non-elastic states

In the previous section we studied the time evolution of
the density matrix describing the elastic part of the wave
function. Here, we would like to study how to describe
the non-elastic part. To fix ideas, consider the scatter-
ing of pions by nuclei in the ∆-isobar region [50]. Typical
processes are those depicted in fig. 1. Figure 1a shows a
self-energy graph contributing to the pion optical poten-
tial: the incoming pion π collides with a nucleon of the
nucleus which is excited to a ∆-isobar and leaves a hole h
in the Fermi sea of nucleons, the ∆ couples further with
a Nπ′ state. If these intermediate states are only virtual,
i.e., for a short time of order h̄, the pion π′′ emerges with
the same energy as π: it is an elastic scattering and it
only contributes to the real part of the optical potential.
On the other hand, if the intermediate particles π′Nh are
near their mass shell, the |π′Nh〉 state can live a long time
and we have instead the process in fig. 1b: it is a real decay
of a pionic mode into pion-particle-hole and contributes to
the imaginary part of the optical, i.e., gives a width to the
“elastic” incoming pion π.

We wish to describe such quasi-elastic reactions
(fig. 1b) by means of a density matrix formalism appropri-
ate to connect with cascade calculations. In order not to
unnecessarily obscure the discussion we shall use a simpli-
fied model with two kinds of particles: “pions” and “ph”
(particle-hole), both bosons, without explicit ∆-isobar or
isospin degrees of freedom. In addition, the equations here
will not include pion absorption. The absorption mecha-
nism is developed in appendix D and added later. The
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Fig. 1. Typical graphs in ∆-hole model: a) contribution to the
pion self-energy; b) a quasi-elastic process.
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Fig. 2. The same processes as in fig. 1, for the model in
eq. (5.1).

model is given by the following Hamiltonian:

Ĥ = Ĥ
(π)
0 + Ĥ

(ph)
0 + ĤI := Ĥf + ĤI, (5.1)

where Ĥ(π)
0 , Ĥ(ph)

0 are one-body operators for pions and
ph, and ĤI is the interaction vertex ππph:

ĤI =
∫

d3xd3y d3zF (x;y,z)φ̂ph(x)φ̂†π(y)φ̂π(z)+h.c.

:= F̂ + F̂ †, (5.2)

and as usual[
φ̂π(x), φ̂†π(y)

]
=

[
φ̂ph(x), φ̂†ph(y)

]
= δ(x − y),[

φ̂π, φ̂ph

]
=

[
φ̂π, φ̂

†
ph

]
= 0. (5.3)

The interaction vertex is assumed to be elementary (i.e.,
instantaneous and without energy dependence) but not
necessarily local. Within this schematic model, the dia-
grams of fig. 1 are now described by those in fig. 2.

At t = −∞ the state consists of a single incoming pion.
In this model the number of pions is conserved by all pieces
of the Hamiltonian. On the other hand, Ĥf preserves the
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number of ph’s but F̂ † and F̂ act creating and deleting
one ph, respectively. A generic state of the system will thus
contain exactly one pion plus a number k of ph particles,
with 0 ≤ k ≤ A, where A is the mass number of the
nucleus

|ψ〉 =
A∑

k=0

∣∣π, (ph)k〉 :=
A∑

k=0

|k〉. (5.4)

|π〉 = |k = 0〉 corresponds to the elastic channel, and |k〉
is obtained after k inelastic steps. Note that in this model
the ph does not have self-energy graphs (unless absorp-
tion is included by a vertex πph as in appendix D). The
conservation of the number of pions and the free propa-
gation of the ph’s are both consequences of the fact that
the model does not implement crossing symmetry for the
pions (there are no anti-pions in this model). In this sense
it has some resemblance with the Lee model [51,52] where
the number of possible graphs is severely limited due to
the existence of very restrictive conservation laws on the
number of particles. In our case the number of graphs
is, however, considerably larger since the number of ph’s
is not restricted: in the one-pion subspace the more gen-
eral graph consists of the continuous pion line with zero or
more outgoing ph lines stemming from it plus zero or more
ph internal lines with the ph emitted and reabsorbed by
the pion in any order. Since, within the model, a ph cannot
couple to a pion-anti-pion pair there are no ph self-energy
graphs. This model is devised to describe, in a simplified
manner, the problem of pion-nucleus reactions at energies
around resonance or below, where pion production is be-
low threshold or barely so. When we introduce absorption
in appendix D the pion will couple to a single ph (mod-
eling the absorption of a virtual pion by a nucleon). In
this case pions and ph can be transmuted into each other
and the number of pions needs not be conserved. (Never-
theless in this region of energies, states with two or more
pions can only be virtual and we shall simplify further the
exposition by not including them in the formulas.)

Our starting point is the Schrödinger equation

ih̄
d
dt

|ψ, t〉 = Ĥ|ψ, t〉. (5.5)

Using that the states |k, t〉 are linearly independent, we
can write

ih̄
d
dt

|k, t〉 = Ĥf |k, t〉 + F̂ †|k − 1, t〉 + F̂ |k + 1, t〉,
k = 0, . . . , A. (5.6)

(Here and in what follows we use the convention that
quantities with indices k out of the physical range 0 ≤
k ≤ A vanish identically. In the present case the terms
with |k = −1〉 and |k = A+ 1〉 in the equations for k = 0
and k = A, respectively, are absent.) Although correct,
these equations show an unwanted symmetry under time
reversal: as the pion goes scattering through the nucleus,
the number of ph produced will increase, then we would
prefer that states with higher number of ph’s had lower
ones as a source and not conversely. Let us see how to

achieve this in the simple case of A = 2. Using an energy
representation for (5.6):

E|0, E〉 = Ĥf |0, E〉 + F̂ |1, E〉,
E|1, E〉 = Ĥf |1, E〉 + F̂ †|0, E〉 + F̂ |2, E〉, (5.7)

E|2, E〉 = Ĥf |2, E〉 + F̂ †|1, E〉.

From the last equation |2, E〉 = (E − Ĥf + iη)−1F̂ †|1, E〉.
The time reversal symmetry is broken by choosing +iη.
Substituting in the second equation and using the same
method in the resulting equation for |1, E〉, we end up
with

E|0, E〉 = Ĥf |0, E〉 + F̂
(
E − Ĥf

−F̂ (E − Ĥf + iη)−1F̂ † + iη
)−1

F̂ †|0, E〉,
E|1, E〉 = Ĥf |1, E〉 + F̂ (E − Ĥf + iη)−1

×F̂ †|1, E〉 + F̂ †|0, E〉, (5.8)

E|2, E〉 = Ĥf |2, E〉 + F̂ †|1, E〉.
The new equations have the desired form; the equation of
motion of |k〉 involves only the states |k〉 and |k − 1〉. In
general the equations are

E|k,E〉 = Ĥk(E)|k,E〉 + F̂ †|k − 1, E〉 (5.9)

with

Ĥk(E) = Ĥf + F̂ Ĝk+1(E)F̂ †, (5.10a)

Ĝk(E) =
(
E − Ĥk(E) + iη

)−1
. (5.10b)

Comparing (5.9) with (4.2), we can see that the operator
Ĥk(E) plays the role of an optical Hamiltonian for the
state |π(ph)k〉. The operators Ĝk(E) are the correspond-
ing propagators and in this model they do not contain
intermediates states with less than k ph particles. From
our previous convention Ĥk=A(E) = Ĥf and Ĝk=A(E) is
just the free propagator. On the other hand, Ĝk=0(E) is
the full pion propagator and Ĥk=0(E) is the full pion opti-
cal potential. For this elastic channel the last term in (5.9)
is absent and this equation coincides with (4.2).

Upon Fourier transform in time energy eq. (5.9) pro-
vides the differential-like evolution equation. It can also
be written in the integral form as

|k,E〉 = Ĝk(E)F̂ †|k − 1, E〉, (k > 0). (5.11)

Both forms of the evolution equation will be used subse-
quently.

To proceed, we define the density matrices

ρ̂k(E1, E2) := |k,E1〉〈k,E2|, (5.12)

which satisfy (using (5.11))

ρ̂k(E1, E2) = Ĝk(E1)F̂ †ρ̂k−1(E1, E2)F̂ Ĝ
†
k(E2)

(k > 0). (5.13)
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In Wigner’s representation, this equation gives ρ̂k(t, E) in
terms of ρ̂k−1(t, E). In order to obtain the differential-like
equation for ρ̂k(t, E) we first rewrite eq. (5.13) as

E1ρ̂k(E1, E2) = Ĥk(E1)ρ̂k(E1, E2)

+F̂ †ρ̂k−1(E1, E2)F̂ Ĝ
†
k(E2) (5.14)

and with the same notation and method used to ob-
tain (4.12) and (4.13), we have

ωρ̂k(ω,E) = Ĥk

(
E +

1
2
ω

)
ρ̂k(ω,E)

−ρ̂k(ω,E)Ĥ†
k

(
E − 1

2
ω

)

−Ĝk

(
E +

1
2
ω

)
F̂ †ρ̂k−1F̂

+F̂ †ρ̂k−1F̂ Ĝ
†
k

(
E − 1

2
ω

)
, (5.15)

or in time representation

ih̄∂tρ̂k(t, E) = e
1
2 ih̄∂

(ρ)
t ∂

(H)
E Ĥk(E)ρ̂k(t, E)

− e−
1
2 ih̄∂

(ρ)
t ∂

(H)
E ρ̂k(t, E)Ĥ†

k(E)

− e
1
2 ih̄∂

(ρ)
t ∂

(G)
E Ĝk(E)F̂ †ρ̂k−1(t, E)F̂

+ e−
1
2 ih̄∂

(ρ)
t ∂

(G)
E F̂ †ρ̂k−1(t, E)F̂ Ĝ†

k(E).
(5.16)

This can be regarded as an extension of eq. (4.13) to ac-
count for the creation of the new |k〉 states out of |k − 1〉
when k > 0. Using (5.10a) it is readily verified that this
equation preserves unitarity, namely,

∂t

A∑
k=0

tr(ρ̂k(t, E)) = 0. (5.17)

To summarize this section: we have been able to
write an evolution equation for the quantities ρ̂k(t, E),
namely eq. (5.16), which in full Wigner’s form provides us
with the relationship between simulation-like quantities,
ρ̂k(x,p; t, E), on the one hand, and microscopic-like quan-
tities, the Green’s functions Ĝk(E) and optical Hamilto-
nians Ĥk(E), on the other, without semiclassical approxi-
mations involved. However, this equation is not fully sat-
isfactory because too much information is contained in
ρ̂k, namely, all nuclear degrees of freedom as well as far
from classical (highly virtual) pionic degrees of freedom.
We deal with such problems in the next sections.

6 Removal of ph degrees of freedom

The quantities ρ̂k(t, E) and their evolution equations con-
tain information both on “pions” and on “ph” states. If we
are only interested in the pionic reactions it is convenient
to simplify the problem by just working with the pionic

a) b)
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Fig. 3. a) Typical graph contributing to the directed part of

Ĝk; b) crossed graphs in Ĝk (for k = 1).

degrees of freedom. This is the approach in [24], where
the simulation only traces the path of the pion inside of
the nucleus. This requires to eliminate the ph degrees of
freedom.

The first idea is to define a new density matrix out of
ρ̂k for the pion only by taking trace over the ph part. If we
attempt to do so in eq. (5.13), or in the other equations,
we find that this new operator trph(ρ̂k) does not obey an
autonomous set of equations; the knowledge of trph(ρ̂k−1)
does not provide us with trph(ρ̂k) because this information
is only partial. On the other hand, trph does not remove
the ph energies which are included in E, and in addition,
the time t is a common time for the pion and the ph’s and
that may not be the most appropriate choice. It seems
thus necessary to disentangle the different energy and time
dependences in ρ̂k in order to find a density matrix truly
depending only on pionic energy and time, as well as xπ

and pπ. Likely, the problem is not trivial, and in fact I have
only partially succeeded in solving it: there is a solution
if the propagators Ĝk(E) only contain direct graphs, as
those in fig. 3a, and no crossed terms, fig. 3b. In this case
the ph particles are distinguishable and 1, 2, . . . , k labels
the order in which the ph’s have been produced.

When the particles are distinguishable, the total wave
function at time t is just the product of individual wave
functions taken at the common time t. In energy this cor-
responds to a convolution. Mathematically, we have

ih̄Ĝk(E) =
[
ih̄Ĝ(k)

π ◦ ih̄Ĝ(1)
ph ◦ ih̄Ĝ(2)

ph

◦ · · · ◦ ih̄Ĝ(k)
ph

]
(E) + (crossed terms), (6.1)

where the explicit term is that associated to direct graphs,
and we have introduced the following notation: the symbol
“◦” stands for convolution over the energy dependence

[
A ◦B]

(E) =
∫

dEA

2πh̄
dEB

2πh̄
2πh̄δ

×(E − EA − EB)A(EA)B(EB), (6.2)

the operator Ĝ(�)
ph (E) is the free propagator of the 4-th

ph (as noted previously, the ph particles do not have self-



L.L. Salcedo: On the cascade approach to the quantum multiscattering problem 81

energy graphs in this model)

Ĝ
(�)
ph (E) =

(
E − Ĥ

(�)
ph + iη

)−1
, (6.3)

(Ĥ(�)
ph is the free Hamiltonian of the 4-th ph, included in

Ĥ
(ph)
0 ). Finally, the operator Ĝ(k)

π (E) is the pion propa-
gator in the presence of k ph’s, but including direct self-
energy graphs only. Thus, it is given recursively by (cf.
fig. 3a)

Ĝ(k)
π (E) =

(
E − Ĥ(k)

π (E) + iη
)−1

, (6.4a)

Ĥ(k)
π (E) = Ĥ

(π)
0 − ih̄F̂

[
Ĝ(k+1)
π ◦ Ĝ(k+1)

ph

]
(E)F̂ †, (6.4b)

where Ĥ(k)
π (E) is the optical Hamiltonian of the pion in

the presence of k ph’s and the operators F̂ , F̂ † act only
on the (k + 1)-th ph. Note that Ĝ(�)

ph and Ĝπ act in the
4-th ph and pionic Hilbert spaces, respectively and they
commute.

The purpose of selecting the direct graphs was to be
able to disentangle the energy time and position momen-
tum degrees of freedom carried by each individual particle
in the state ρ̂k(t, E). This is achieved as follows. As shown
in detail in appendix B, if crossed terms are dropped in
Ĝk, a new (more detailed) state |Eπ, E1, . . . , Ek〉k can be
defined, depending on π and ph degrees of freedom (x and
p) and also on their energies, which is related to the state
|k,E〉 in eq. (5.9) by means of

|k,E〉 =
∫

dEπ

2πh̄
dE1

2πh̄
· · · dEk

2πh̄
2πh̄δ

×(E − Eπ − E1 − · · · −Ek)
×|Eπ, E1, . . . , Ek〉k. (6.5)

The new state satisfies the integral-like equation, which is
analogous to (5.11),

|Eπ, E1, . . . , Ek〉k = ih̄Ĝ(k)
π (Eπ)ih̄Ĝ

(k)
ph (Ek)

1
ih̄

× F̂ †|Eπ+Ek, E1, E2, . . . , Ek−1〉k−1,

(k>0). (6.6)

Here F̂ † acts on the pion in | 〉k−1 and creates the k-th
ph, thus building the subset of direct graphs only (and
so |Eπ, E1, . . . , Ek〉k is not symmetric under exchange of
ph’s). Actually this equation is used recursively in ap-
pendix B to define the states |Eπ, E1, . . . , Ek〉k starting
from the k = 0 state.

Next, we define the associated density matrix

ρ̂k(ωπ, Eπ, ω1, E1, . . . , ωk, Ek) :=∣∣∣∣Eπ +
1
2
ωπ, E1 +

1
2
ω1, . . . , Ek +

1
2
ωk

〉
k〈

Eπ − 1
2
ωπ, E1 − 1

2
ω1, . . . , Ek − 1

2
ωk

∣∣∣∣
k

, (6.7)

from which ρ̂k(ω,E) can easily be recovered by making use
of eq. (6.5). This new density matrix satisfies the following

recurrence equation (which is a translation of (6.6)):

ρ̂k(ωπ, Eπ, ω1, E1, . . . , ωk, Ek)

= h̄2Ĝ(k)
π

(
Eπ +

1
2
ωπ

)
Ĝ

(k)
ph

(
Ek +

1
2
ωk

)
F̂ †

×ρ̂k−1(ωπ+ωk, Eπ+Ek, ω1, E1, . . . , ωk−1, Ek−1)

×F̂ Ĝ(k)†
ph

(
Ek − 1

2
ωk

)
Ĝ(k)†
π

(
Eπ − 1

2
ωπ

)
. (6.8)

This equation represents a definite improvement over
eq. (5.13) because now the trace can be taken over ph
degrees of freedom and a closed set of equations is ob-
tained: on the right-hand side the trace factorizes in the
form {1, . . . , k − 1}{k} and as a consequence trph ρ̂k is
given in terms of trph ρ̂k−1.

In order to obtain a pionic density matrix, let us call
it ρ̂(k)(ωπ, Eπ;E), the ph energies E� can easily be in-
tegrated out. Also, the “times” ω� should be fixed. Af-
ter Fourier transforming, each ω� becomes the time t� at
which the 4-th ph is detected. In order to preserve unitar-
ity at any “pionic” time t, we should have t smaller that
any ph time, so we are lead to choose all the ph times t� as
+∞ in the definition of the purely pionic density matrix,
that is,

ρ̂(k)(t, Eπ;E) := lim
{t}→+∞

∫
dE1

2πh̄
dE2

2πh̄
· · · dEk

2πh̄
×2πh̄δ(E − Eπ − E1 − · · · −Ek)
× trph ρ̂k(t, Eπ; t1, E1, . . . , tk, Ek). (6.9)

(Where t refers to the pionic time associated to the pionic
frequency ωπ. Also we remark that we are taking the limit
of large ph times, and not integrating over those times.)
This is the density matrix in pionic space describing the
pions which have scattered k times (producing k ph’s). In
particular,

ρ̂(k=0)(t, Eπ;E) = 2πh̄δ(Eπ − E)ρ̂k=0(t, E) (6.10)

is the density matrix for the elastic channel. Clearly, in
ρ̂(k)(t, Eπ;E), E corresponds to the total energy, which is
conserved. On the other hand, Eπ is the energy carried
by the pion after k collisions and both quantities coincide
in the elastic channel. We further discuss on the coexis-
tence of these two energies in ρ̂(k)(t, Eπ;E) over the end
of sect. 7.

As shown in detail in appendix C, if the definition
in (6.9) is used in eq. (6.8), the following recurrence is
found for ρ̂(k) (analogous to (5.13)):

ρ̂(k)(ωπ, Eπ;E) = Ĝ(k)
π

(
Eπ +

1
2
ωπ

)

×
∫

dE′
π

2πh̄
trph{2πh̄δ(E′

π − Eπ − Ĥph)

×F̂ †ρ̂(k−1)(ωπ, E′
π;E)F̂}

×Ĝ(k)†
π

(
Eπ − 1

2
ωπ

)
, (k > 0). (6.11)
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Moreover, there it is also shown that unitarity is preserved,
as a direct mathematical consequence of taking all tph as
+∞, that is,

∂t

[
A∑

k=0

tr
∫

dEπ

2πh̄
ρ̂(k)(t, Eπ;E)

]
= 0. (6.12)

To obtain the Schrödinger-like equation associated to
the integral-like equation in (6.11), we follow the same
procedure as that used to obtain eq. (5.15). This gives

ωπρ̂
(k)(ωπ, Eπ;E)

= Ĥ(k)
π

(
Eπ +

1
2
ωπ

)
ρ̂(k)(ωπ, Eπ;E)

−ρ̂(k)(ωπ, Eπ;E)Ĥ(k)†
π

(
Eπ − 1

2
ωπ

)

− trph

∫
dE′

π

2πh̄
2πh̄δ(E′

π − Eπ − Ĥph)

×
[
Ĝ(k)
π

(
Eπ +

1
2
ωπ

)
F̂ †ρ̂(k−1)(ωπ, E′

π;E)F̂

−F̂ †ρ̂(k−1)(ωπ, E′
π;E)F̂ Ĝ(k)†

π

(
Eπ − 1

2
ωπ

)]
(6.13)

and then, after Fourier transforming in ωπ,

∂tρ̂
(k)(t, Eπ;E) =

(
∂tρ̂

(k)
)(+)

(t, Eπ;E)

+
(
∂tρ̂

(k)
)(−)

(t, Eπ;E) (6.14)

with(
ih̄∂tρ̂

(k)
)(+)

(t, Eπ;E)

= e
1
2 ih̄∂

(ρ)
t ∂

(H)
Eπ Ĥ(k)

π (Eπ)ρ̂(k)(t, Eπ;E)

−e− 1
2 ih̄∂

(ρ)
t ∂

(H)
Eπ ρ̂(k)(t, Eπ;E)Ĥ(k)†

π (Eπ) (6.15)

and(
ih̄∂tρ̂

(k)
)(−)

(t, Eπ;E)

= − trph

∫
dE′

π

2πh̄
2πh̄δ

(
E′
π − Eπ − Ĥph

)
×

[
e

1
2 ih̄∂

(ρ)
t ∂

(G)
Eπ Ĝ(k)

π (Eπ)F̂ †ρ̂(k−1)(t, E′
π;E)F̂

−e− 1
2 ih̄∂

(ρ)
t ∂

(G)
Eπ F̂ †ρ̂(k−1)(t, E′

π;E)F̂ Ĝ(k)†
π (Eπ)

]
. (6.16)

Equations (6.11) and (6.13) (or equivalently, (6.14)) are
the relevant result of this section. In ∂tρ̂(k) we have dis-
tinguished two contributions. The first one, (∂tρ̂(k))(+), is
related to ρ̂(k) itself and describes a pion (of class k) prop-
agating with optical Hamiltonian Ĥ(k)

π , (cf. eq. (4.13)): it
contains both, the “elastic” propagation of the pion inside
the nucleus, and the quasi-elastic steps in which the pion
of class k becomes of class k + 1. In this sense it can be

Eπ

E ′π

(p′)Hph
′π

php,

π

x q nucleus

p+p′+q,

p′,

Fig. 4. Quasi-elastic process in a finite system.

called the annihilation part of ∂tρ̂(k). The second contri-
bution, (∂tρ̂(k))(−), accounts for the quasi-elastic steps of
the form k − 1 → k. From the point of view of ρ̂(k) it is
the creation part of ∂tρ̂(k). The Dirac delta in this term
indicates that the ph’s are on-shell. Mathematically, this
is a direct consequence of having chosen all the ph times
as +∞ in the definition of the pionic density, (6.9).

Before studying eq. (6.14) in more detail, let us see
how it works in a simple case:

F̂ =
∫

d3xg(x)φ̂ph(x)φ̂†π(x)φ̂π(x) (6.17)

and Ĥ
(π)
0 , Ĥph functions of the momentum only. Let us

first put the creation part of ∂tρ̂(k) in Wigner’s form. In a
first step[

trph

∫
dE′

π

2πh̄
2πh̄δ(E′

π − Eπ − Ĥph)

×F̂ †ρ̂(k−1)(t, E′
π;E)F̂

]
(xπ,pπ)

=
∫

d3p′

(2πh̄)3
d3q

(2πh̄)3
g2(xπ, q)ρ(k−1)

×(xπ,pπ + p′ + q; t, Eπ +Hph(p′);E), (6.18)

where

g2(x, q) :=
∫

d3ye−iy·q/h̄g∗
(

x+
1
2
y

)
g

(
x− 1

2
y

)
(6.19)

and q is the momentum transferred to the nucleus (fig. 4).
Next, we shall retain only the leading order in h̄. In this

way several simplifications take place in (∂tρ)(−): i) the
exponentials exp[± 1

2 ih̄∂
(ρ)
t ∂

(G)
Eπ

] are unity at leading order
in h̄; ii) the pion propagator becomes free, Ĝπ(E) → (E−
Ĥ

(π)
0 + iη)−1, because each loop in its self-energy gives a h̄

factor (eq. (4.16)); iii) in the classical limit the operators
commute (cf. eq. (3.9)); and, iv) using the identity (3.5)

g2(x, q) →
h̄→0

(2πh̄)3δ(q)g2(x). (6.20)
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After some algebra, the creation part can be written as(
∂tρ

(k)
)(−)

(x,p; t, Eπ;E)

=
∫

d3x′ d3p′

(2πh̄)3
dE′

π

2πh̄
Q̃(x,p, Eπ;x′,p′, E′

π)

×ρ(k−1)(x′,p′; t, E′
π;E) +O(h̄) (6.21)

with

Q̃(x,p, Eπ;x′,p′, E′
π)

=
1
h̄2 g

2(x)δ(x − x′)2πh̄δ
(
Eπ −H

(π)
0 (p)

)
×2πh̄δ

(
E′
π − Eπ −Hph

(
p′ − p

))
. (6.22)

We can see that the quasi-elastic probability in this ap-
proximation is positive, local (x = x′) and momentum
is conserved (q = 0). The ph are on-shell (E′

π − Eπ =
Hph(p′ − p)) and moreover the outgoing pions are also
created on-shell. As noted in the introduction the lat-
ter fact is a typical consequence of taking h̄ → 0, due
to the uncertainty principle. Mathematically, the factor
2πh̄δ

(
Eπ − H

(π)
0 (p)

)
follows from the imaginary part of

the free pion propagator Ĝπ(E) − Ĝ†
π(E) in (6.16). Sum-

marizing, the probability of quasi-elastic Q̃ obtained at
leading order in h̄ coincides with the result that would
follow from carrying out a standard nuclear-matter calcu-
lation (g = gc constant) in lowest order in perturbation
theory, plus a local density prescription (gc → g(x) at the
end of the nuclear matter calculation) [24]. This latter fact
is quite remarkable since usually the local density approx-
imation is put in by hand, and here it follows naturally as
a semiclassical approximation.

The annihilation part of ∂tρ̂(k) comes from comput-
ing the pion optical potential up to one loop and keeping
the free and the imaginary parts (lowest order in h̄ in
eq. (4.17)). This gives(

∂tρ
(k)

)(+)

(x,p; t, Eπ;E)

=
{
H

(π)
0 (p), ρ(k)(x,p; t, Eπ;E)

}
P
,

−R̃(x,p;Eπ)ρ(k)(x,p; t, Eπ;E) +O(h̄), (6.23)

where

R̃(x,p;Eπ)

=
1
h̄2 g

2(x)
∫

d3p′

(2πh̄)3
2πh̄δ

×
(
Eπ −Hph(p − p′)−H

(π)
0 (p′)

)
. (6.24)

The first term of the right-hand side of eq. (6.23) describes
a classical free propagation of the pion. The second term
indicates a reaction probability rate given by R̃(x,p, Eπ).
Unitarity is verified since

R̃(x,p;Eπ) =
∫

d3x′ d3p′

(2πh̄)3
dE′

π

2πh̄

×Q̃(x′,p′, E′
π;x,p, Eπ). (6.25)

Of course, the right-hand side of (6.21) should be set to
0 for the elastic channel, k = 0, and similarly, the reaction
term is not present in (6.23) when no ph remains in the
nucleus, k = A. Otherwise, Q̃ and R̃ are independent of k
and E in this approximation. Also note that because the
pions are on-shell the Eπ-dependence can be dropped and
eqs. (6.21) and (6.23) have the form of eq. (1.3), except
that the classical propagation has been extracted from the
quasi-elastic rate Q.

Unfortunately, beyond leading order in h̄, eq. (6.14)
displays two undesirable features: first, the dependence
of ρ̂(k) on Eπ, which implies that virtual as well as real
pions coexist in ρ̂(k). We deal with this problem in the
next section. And second, the non-locality in time: in gen-
eral ∂tρ̂(k) will depend on the previous history of ρ̂(k) and
ρ̂(k−1). The instantaneous equations can be obtained by a
method similar to that used for eq. (4.17): ∂tρ̂(k) is given
as a function of ∂nt ρ̂

(k) and ∂n
′

t ρ̂
(k−1), n, n′ = 0, 1, . . .,

each time derivative carrying a factor h̄. Then, higher-
order derivatives on the right-hand side can be eliminated
in terms of lower ones. For instance, writing eq. (6.14)
with an obvious schematic notation, we have for k = 1, 2

∂tρ
(2) =

∞∑
n=0

h̄nN (+)
n ∂nt ρ

(2)+
∞∑
n=0

h̄nN (−)
n ∂nt ρ

(1), (6.26a)

∂tρ
(1) =

∞∑
n=0

h̄nN ′(+)
n ∂nt ρ

(1)+
∞∑
n=0

h̄nN ′(−)
n ∂nt ρ

(0). (6.26b)

Then, to first order in h̄,

∂tρ
(2) =

{
N

(+)
0 + h̄N

(+)
1 N

(+)
0 +O(h̄2)

}
ρ(2)

+
{
N

(−)
0 + h̄N

(−)
1 N ′(+)

0 +O(h̄2)
}
ρ(1)

+
{
h̄N

(−)
1 N ′(−)

0 +O(h̄2)
}
ρ(0). (6.27)

We observe that the equations can be written in an instan-
taneous form at the price of expressing ∂tρ(k), not only in
terms of ρ(k) and ρ(k−1), but using all densities ρ(k′) with
k′ ≤ k. We shall see that a similar phenomenon occurs
when the Eπ-dependence is removed form ρ̂(k).

7 Integration of the virtual pions

In the previous section we have succeeded in writing an
equation, eq. (6.14), for the temporal evolution of the den-
sity matrix of pions which have scattered k times, with
only pionic degrees of freedom. However, it is not a fully
satisfactory one due to its dependence on the pion energy,
Eπ. Consider, for instance, the evolution of a pion after
its creation (i.e. after the scattering): two frequencies are
relevant, first that characteristic of the source, represented
by Eπ, and second that of the free evolution, H(π)

0 (pπ).
Due to interference, after traveling some wavelengths only
on-shell pions, those with Eπ = H

(π)
0 (pπ), will survive, un-

less another scattering takes place. Such a collapse of the
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Fig. 5. Shrinking of virtual intermediate states (V) to produce
an effective N -body quasi-elastic step between real pions (R).

wave function can also be regarded as a classical limit: if
h̄ were very small any time interval would be large com-
pared with a few periods of the order of h̄/|Eπ−H(π)

0 (pπ)|,
provided that the particle is off-shell. Then, we expect the
following relation to hold:

ρ̂(k)(t, Eπ;E) →
h̄→0

2πh̄δ
(
Eπ − Ĥ

(π)
0

)
(7.1)

up to a factor. This relation follows from the energy shell
constraint eq. (4.21) and is checked in the next section (cf.
eq. (8.13)).

Initially (in the incoming pion beam) the pion is on-
shell. After several quasi-elastic steps the pion leaves the
nucleus and is again on-shell since only on-shell pions can
travel long distances to the detector. Between two succes-
sive collisions the pion can be (nearly) on-shell (i.e., a real
pion) or off-shell (a virtual pion). Consider a typical path
of the pion through the nucleus, for instance RVVRVR
(time increasing from right to left), where R stands for real
and V for virtual pion, in this case with five quasi-elastic
collisions. Each collision is of the type one-body mecha-
nism, producing one ph. The virtual pions will travel a
short distance and the Monte Carlo simulation only needs
to trace the real ones. Within a classical limit, the real
pions would follow a classical trajectory, whereas the path
followed by the virtual pions shrinks. The situation is thus
better described as a path RRR, that is, involving real pi-
ons only and two collisions. The first collision ejects two
ph, a two-body quasi-elastic mechanism, whereas the sec-
ond collision involves a three-body quasi-elastic mecha-
nism (see fig. 5).

Advancing results of the next section, we can see the
different properties of real and virtual pions as follows.
Consider the classical limit directly in eq. (6.11). By ne-
glecting the ±ωπ/2 (which carries an h̄ upon Fourier trans-
form to time representation) in Ĝπ and going to time
representation it turns out that ρ̂(k)(t, Eπ;E) is related
to ρ̂(k−1)(t, E′

π;E), i.e., the number of pions of class k
is proportional to the number of pions of class k − 1 at
the same time. This is only possible if they live during a
very short period of time, and this is correct for virtual
pions. Of course, for on-shell pions this would be an ab-
surd consequence which is avoided because for them taking

±ωπ/2 → 0 is not justified even in the classical limit: the
quadratic GπG

†
π divergence (at the on-shell point) is too

strong. (This is also the reason for needing differential-
like evolution equations, as (6.13) which have softer diver-
gences than the integral-like (6.11).) The virtual pions are
not only irrelevant to final cross-sections but their short-
living times can only be achieved by interference which
is very hard to reproduce by a simulation. Also, their ex-
istence implies that ρ̂(t, Eπ;E) should be strongly non-
positive definite.

Our goal is thus to integrate out the virtual pions and
end up with an equation including only real pions. Because
the real pions are on-shell their energy dependence is fixed
and its corresponding density, to be denoted f̂k(t, E), does
not depend on Eπ. In addition, in order to preserve uni-
tarity at each time, and not only in the t → +∞ limit,
we are led to the following definition for the density of
on-shell pions:

f̂k(t, E) :=
∫

dEπ

2πh̄
ρ̂(k)(t, Eπ;E), k = 0, 1, 2, . . . , (7.2)

as the Monte Carlo density to work with. The suitability
of this definition is further discussed over the end of this
section. By construction it satisfies a conservation equa-
tion like eq. (6.12), namely,

∂t

[
A∑

k=0

tr f̂k(t, E)

]
= 0. (7.3)

It is clear that the evolution equation for ρ̂(k)(t, Eπ;E)
completely determines the evolution of f̂k(t, E), however,
whereas the equation for ρ̂(k) involves pions of type k and
k − 1 (one-body mechanism) that for f̂k will depend on
pions of all classes k′ ≤ k (N -body quasi-elastic). In ad-
dition, initially ρ̂(0) is determined by f̂0 (cf. (6.10)). So
there is an autonomous equation for the densities f̂k. The
question arises how to obtain such an equation. Simple
integration over Eπ in eqs. (6.11) or (6.13) does not work.
Essentially the problem is how to invert eq. (7.2). To do
so I make an Ansatz for the Eπ distribution of the real
pions in ρ̂(k)(t, Eπ;E):

ρ̂(k)(t, Eπ;E) = ρ̂
(k)
R (t, Eπ;E) + ρ̂

(k)
V (t, Eπ;E), (7.4)

where ρ̂R,V are the distributions of real and virtual pions
in ρ̂. The explicit form of these distributions is restricted
by imposing the following conditions:

1) ρ̂(k)
R (t, Eπ;E) should be constructed out of f̂k(t, E), in

order to be able to invert eq. (7.2).
2) Consistency with eq. (7.2) requires that

f̂k(t, E) =
∫

dEπ

2πh̄
ρ̂
(k)
R (t, Eπ;E), (7.5a)

0 =
∫

dEπ

2πh̄
ρ̂
(k)
V (t, Eπ;E), (7.5b)

because f̂k is already the distribution of real pions
without the redundant Eπ-dependence.
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3) ρ̂(k)
R , ρ̂

(k)
V should be Hermitian.

4) In the classical limit, ρ̂(k)
V should collapse to zero, due

to quantal interference:

ρ̂
(k)
V (t, Eπ;E) →

h̄→0
0, (7.6a)

ρ̂
(k)
R (t, Eπ;E) →

h̄→0
2πh̄δ

(
Eπ − Ĥ

(π)
0

)
f̂k(t, E). (7.6b)

The δ-function in eq. (7.6b) follows from (7.1) and the
factor f̂ is obtained by normalization. In the classical
limit, operators commute so there is no conflict be-
tween (7.6b) and the point 3) above.

5) For the elastic channel, we impose the constraint

ρ̂
(k=0)
V = 0. (7.7)

This defines the elastic channel pions as real. Virtual
pions only appear as a consequence of (hard) collisions,
whereas the mean-field effects under the elastic evo-
lution are regarded as soft. Technically this choice is
needed to be able to close the equations below.

Let us see how such an Ansatz solves the problem. To
alleviate the notation, let us write eqs. (6.11), (6.13) in
the form

ρ̂(k) = M (k,k−1)ρ̂(k−1), (7.8a)

∂tρ̂
(k) = N (k,k)ρ̂(k) +N (k,k−1)ρ̂(k−1), (7.8b)

or even more compactly

ρ = Mρ, (7.9a)
∂tρ = Nρ, (7.9b)

where ρ is a (column) vector (ρ̂(0), ρ̂(1), . . . , ρ̂(A))T , and
M,N are matrices with respect to the index k and super-
operators in Hilbert space (map operators onto operators).
Also, eq. (7.2) can be written as

f = bρ, b :=
∫

dEπ

2πh̄
. (7.10)

In addition, ρ(k)
R will be constructed out of fk by some

linear procedure a(k) to be specified later

ρR = af = abρ, (7.11a)
ρV = (1 − ab)ρ := PVρ. (7.11b)

P
(k)
V is the projector onto ρ̂(k)

V . Equations (7.5) then read,

ba = 1, bPV = 0. (7.12)

Note that b removes dependence on Eπ, while a creates
dependence on Eπ, and M increases the index k by one
unit. Equation (7.4) then implies

ρ = ρR + ρV = af + PVρ = af + PVMρ. (7.13)

In the last step we have used the integral-like evolution
equation for expressing the short-living virtual state in

terms of its source. (In the elastic channel this is consis-
tent due to (7.7).) This process can be iterated until the
source is a real pion and in this way the virtual pions are
integrated out. In practice this procedure can be carried
out as follows. Using previous equations and the fact that
∂t and b commute with each other, we can write the fol-
lowing chain of relations:

∂tf = b∂tρ = bNρ

= bN(af + PVMρ)
= bNaf + bNPVM(af + PVMρ)
= bNaf+bNPVMaf

+bNPVMPVM(af+PVMρ)
= · · · . (7.14)

At each step, ρV is carried to smaller values of k since it
appears with a new power of M . This downward recur-
rence ends due to (7.7) (the elastic-channel pions are real
and no inconsistency arises). In this way all virtual pions
can be eliminated and formally

∂tf = bN(1 − PVM)−1af. (7.15)

This equation explicitly shows that f , as a vector, satis-
fies a closed equation. Let us expand eq. (7.15), with the
obvious notation,

∂tf̂k =
{
bN (k,k)a(k)

}
f̂k +

{
bN (k,k−1)a(k−1)

+bN (k,k)P
(k)
V M (k,k−1)a(k−1)

}
f̂k−1

+
{
bN (k,k−1)P

(k−1)
V M (k−1,k−2)a(k−2)

+bN (k,k)P
(k)
V M (k,k−1)P

(k−1)
V

×M (k−1,k−2)a(k−2)
}
f̂k−2 + · · ·

:= R(k)f̂k +Q(k,k−1)f̂k−1

+Q(k,k−2)f̂k−2 + · · · , (7.16a)
∂tf = Rf +Qf, (7.16b)

where R takes care of the propagation of the pion once it
is produced and Q describes the quasi-elastic steps. (Note
that in eq. (1.3) the elastic channel was included in Q
while here it is given by R(k=0).)

Our actual procedure has been to remove any virtual
pion by explicitly writing it in terms of the nearest real
pion acting as a source for it. As a consequence only real
pions do explicitly appear, and the hidden virtual interme-
diate states translate into effective N -body quasi-elastic
probabilities, fig. 5.

In a classical limit, each factor PV will increase the
order in h̄, due to eq. (7.6a), and only few terms will be
needed in (7.16a). For instance, at leading order in h̄ the
one-body mechanism, Q(k,k−1), is dominant and the effec-
tive two-body quasi-elastic, Q(k,k−2), is the first quantum
correction.

R(k) plays the role of an effective Hamiltonian for f̂k.
Its actual form will depend on the concrete form of a(k),
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which still has to be chosen, but using general properties
of a(k) we still can say something about R(k)

R(k)f̂k(ωπ, E)

=
(
bN (k,k)a(k)fk

)
(ωπ, E)

=
1
ih̄

∫
dEπ

2πh̄

(
Ĥ(k)

π

(
Eπ +

1
2
ωπ

)
ρ̂
(k)
R (ωπ, Eπ;E)

−ρ̂(k)
R (ωπ, Eπ;E)Ĥ(k)†

π

(
Eπ − 1

2
ωπ

))

=
1
ih̄

[
Ĥ

(π)
0 , f̂k(ωπ, E)

]
+

1
ih̄

∫
dEπ

2πh̄

(
V̂k

(
Eπ +

1
2
ωπ

)
ρ̂
(k)
R (ωπ, Eπ;E)

−ρ̂(k)
R (ωπ, Eπ;E)V̂ †

k

(
Eπ − 1

2
ωπ

))
, (7.17)

where V̂k = Ĥ
(k)
π − Ĥ

(π)
0 is the optical potential. Further,

for h̄→ 0, using eq. (7.6b)

R(k)f̂k(ωπ, E) ≈ 1
ih̄

(
Ĥ(k)

π

(
Ēπ +

1
2
ωπ

)
f̂k(ωπ, E)

−f̂k(ωπ, E)Ĥ(k)†
π

(
Ēπ− 1

2
ωπ

))
, (7.18)

where Ēπ = Ĥ
(π)
0 is the on-shell energy.

In the special case k = 0, eq. (7.7) completely deter-
mines a(k=0) with the help of eq. (6.10)

a(k=0) = 2πh̄δ(E − Eπ), (7.19)

which obviously satisfies all other requirements 1)–4), and
the equation ∂tf̂k=0 = R(k=0)f̂k=0 is nothing else than
eq. (4.13).

In the general case, the super-operator a(k) can be cho-
sen fairly arbitrarily. A natural choice is(

a(k)f̂k

)
(t, Eπ;E) = ih̄Ĝ(k)

π (Eπ)f̂k(t, E)

−f̂k(t, E)ih̄Ĝ(k)†
π (Eπ), k �= 0. (7.20)

Clearly, this choice satisfies the requirements 1) and 3),
above. The point 2) follows from

ih̄Ĝπ(Eπ) =
∫

dt eiEπt/h̄Ûπ(t)θ(t), (7.21)

where Ûπ(t) is the evolution operator, and unitarity, i.e.
Ûπ(t = 0) = 1. If h̄ → 0, Ĝπ and f̂ commute and Ĝπ

approaches the free propagator,

ih̄Ĝ(k)
π (Eπ) − ih̄Ĝ(k)†

π (Eπ) → 2πh̄δ
(
Eπ − Ĥ

(π)
0

)
, (7.22)

which is the point 4), above. Other choices are possible,
for instance taking only Im Ĝπ, or taking Ĝfree

π . Another
possibility would be to use Eπ ± 1

2ωπ instead of Eπ in

Ĝπ in (7.20) (in frequency representation), however this
choice turns out to be inappropriate for computing N -
body absorption processes (cf. next section). As compared
to that, our choice of a(k) is the instantaneous version
since it relates ρ(k)

R to fk at the same time. It is noteworthy
that the definition of a(k) has some resemblance with the
formulas invoked in the standard cascade method [1,11].

Equations (7.16) are, perhaps, the main result of the
paper. They describe the evolution of the purely pionic
density matrix containing only real pions. They make ex-
plicit the N -body quasi-elastic rates Q(k,k′) seen by the
pion as it propagates through the nucleus. These rates
are the input to be used in the cascade method. In ap-
pendix D these formulas are trivially extended to include
absorption. They are analyzed in the next section.

It is noteworthy that the concrete choice of a(k) can-
not affect the evolution of f̂k, if computed to all orders,
that is, including all N -body mechanisms, since its defi-
nition (7.2) is independent of a(k). (The right-hand side
of (7.15) is actually independent of a.) Obviously, differ-
ent choices introduce different organizations of the series.
This ambiguity is related to that in the separation into real
and virtual pions. In this regard, it would be very inter-
esting to choose a(k) so that not only bP (k)

V = 0, but also
bN (k,k)P

(k)
V = 0. This essentially means that the real and

virtual components of the density are separately preserved
under elastic evolution, i.e. in the absence of collisions. In
this case eqs. (7.16a) would simplify considerably. How-
ever, it is not clear how to impose this property or even
whether it is consistent with the other requirements set
on a(k).

We also note that the formulas (7.16) involve no ap-
proximations, except that of not including crossed graphs,
that is, neglecting Bose symmetry of the ph’s, as explained
at the beginning of sect. 63.

In eq. (6.9) we introduced the density matrix
ρ̂(k)(t, Eπ;E) for class k pions, depending on the time
and energy of the pion and also on the conserved total
energy E. It can be noted that in most formulas, includ-
ing (6.11), (6.13), (7.2) and (7.20), E appears only as a
parameter in the densities. An exception is (7.19), which
refers to the elastic channel, and so a separated discussion
is needed for that case.

For pions of class k ≥ 1, E is just a parameter. We
could as well introduce a new density ρ̂(k)(t, Eπ), without
E-dependence, by integrating ρ̂(k)(t, Eπ;E) over E, and
rederive all equations for it. If this is done, the density of
real pions defined in (7.2) becomes f̂k(t), which, recalling
the “energy average” in (4.8), corresponds to the standard
equal-time pionic density for pions of class k. In this light
the integration of virtual pions is related to the closing of
a set of equations for the equal-time densities. After the
pion has scattered once or more, the initial energy E is no
longer relevant and the corresponding N -body reaction

3 Another simplification has been done in appendix D for
absorption, this time just for obtaining a simpler presentation,
namely, to disregard ph self-energy graphs.
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probabilities do not depend on E, a fact explicitly verified
in the next section.

On the other hand, for pions in the elastic channel E is
quite relevant and coincides with Eπ (cf. (6.10)). Integrat-
ing over Eπ to obtain f̂k(t, E) in (7.2) merely removes this
redundant energy dependence. It should be noted that, be-
ing conserved, E is a known datum in the collision experi-
ment, thus it does not seem advisable to remove this infor-
mation by going further and integrate over E to work with
the equal-time elastic-channel density matrix. Indeed, as
verified in the next section, the N -body reaction proba-
bilities Q(N,0) and A(N,0) display an explicit dependence
on the pion energy.

As noted in sect. 4, when a space-time Wigner form
is used (as opposed to an equal-time formulation) it is
customary to use a transport and an energy shell con-
straint equation. In this work we have used the differential-
like transport equation, (6.13), and the integral-like equa-
tion (6.11) as an equivalent set of equations. Actually the
integral-like equation contains both the transport and the
constraint equations (except for the elastic channel) and
not surprisingly this equation is responsible for putting the
particles on-shell as h̄ goes to zero in the present approach
(cf. eq. (8.12)).

8 N-body effective quasi-elastic and
absorption mechanisms

In this section we shall work out the consequences of the
previous scheme in the simplest cases. To simplify, we shall
study only nuclear matter (g(x) = constant = g in (6.17),
K(x,y) = constant = κ in (D.1), and ρπ(x,p; t, E) in-
dependent of x), free propagators, locality in time, and
in general lowest orders in h̄. As was shown in sect. 6 all
these assumptions are compatible with h̄→ 0.

Let us study first the one-body quasi-elastic Q(1,0):

Q(1,0) = bN (1,0)a(0) + bN (1,1)P
(1)
V M (1,0)a(0). (8.1)

In leading order of h̄ only the first term contributes
(besides in nuclear matter and using free Hamiltonians
N (k,k) = 0). The result can be obtained more directly
from eqs. (6.21), (6.22):

Q(1,0)(x,p;x′,p′;E) =
1
h̄2 g

2δ(x − x′)

×2πh̄δ
(
E −H

(π)
0 (p) −Hph(p′ − p)

)
. (8.2)

The one-body absorption rate, A(1,0) is (the operation
P plays a similar role in absorption as N does in quasi-
elastic, see appendix D for details)

A(1,0) = Pa(0) (8.3)

that can be worked out to give

A(1,0)(x,p;E) =
κ2

h̄2 2πh̄δ(E −Hph(p)). (8.4)

ρ(1)

ρ(1)Eπp ,
Eπp,

p, Hph(p)

H   (   )qph H   (   )qph

E
0

f
0 f

0
E

0

,
,

q
q

,p+q ,p+q

a) b)

Fig. 6. a) Quasi-elastic step: the incoming pion and outgo-
ing ph are on-shell. The outgoing pion can be real or virtual.
b) Absorption process.

However, at leading order in h̄, E = H
(π)
0 (p) which is

incompatible with the δ-function in eq. (8.4) in physical
cases: the pion and the ph cannot both be on-shell and
as a consequence there is no one-body absorption in the
classical limit.

In order to study more complicated cases, a drastic
simplification in the notation is convenient. Consider the
relation ρ̂(1) = M (1,0)a(0)f̂0 which is represented in fig. 6a.
Using (6.11) for M (1,0) and (7.19) for a(0), it can be writ-
ten as

ρ̂(1)(ωπ, Eπ;E) = Ĝ(1)
π

(
Eπ +

1
2
ωπ

)
trph

×{
2πh̄δ(E − Eπ − Ĥph)F̂ †f̂0(ωπ, E)F̂

}
×Ĝ(1)†

π

(
Eπ − 1

2
ωπ

)
. (8.5)

In what follows, we will use E0 to denote the total energy
E and f0(t) to denote (the full Wigner’s form of) f̂0(t, E0).
In addition we introduce the notations (see fig. 6a)

E := Eπ −H
(π)
0 (p),

Ē := E0 −Hph(q) −H
(π)
0 (p),

G̃(E) := (E + iη)−1. (8.6)

Furthermore, we will focus on the h̄ and energy time de-
pendence. Integration over momenta, vertex operators (F̂ ,
K̂), traces, etc., will be implicit. Schematically, the rela-
tionship ρ̂(1) = M (1,0)a(0)f̂0 will look (in time representa-
tion, where the product of frequency functions becomes a
convolution over times)

ρ(1)(t, E) =
∫

dτ h̄2
(
G̃G̃†)(τ, E)

×f0(t− τ)2πh̄δ(E − Ē). (8.7)

The total energy E0 (called E in the previous sections)
is not displayed. The operator

(
G̃G̃†)(τ, E) comes from
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Ĝπ(Eπ + 1
2ωπ)Ĝ

†
π(Eπ − 1

2ωπ), namely,

h̄2
(
G̃G̃†)(τ, E) =

∫
dω
2πh̄

e−iωτ/h̄h̄2

×G̃
(
E +

1
2
ω

)
G̃†

(
E − 1

2
ω

)
. (8.8)

This is the kernel of the super-operator M and controls
how (real and virtual) pions of class k are produced out of
pions of class k − 1 and their subsequent propagation. In
terms of a standard diagrammatic calculation (for instance
in nuclear matter) this would correspond to compute the
graphs associated to the transition amplitude between the
initial and final states and then to square it to get the
transition probability, or equivalently, to compute the self-
energy graphs of the initial state and apply Cutkosky rules
to associate each cut of the graph to a contribution to the
transition probability to a concrete final state.

The exact integration over ω in (8.8) is easily per-
formed, but an expansion in powers of h̄ is more conve-
nient for our purposes. To get such an expansion, we start
with the identity

h̄2∂τ
(
G̃G̃†)(τ, E) = ih̄

(
G̃− G̃†)(τ, E). (8.9)

The right-hand side is the kernel of N and is a softer
distribution than

(
G̃G̃†). Some algebra yields

ih̄
(
G̃− G̃†)(τ, E) = −2h̄ Im

[
δ

(
τ +

1
2
ih̄∂E

)
G̃(E)

]

= 2πh̄δ(τ)δ(E) + h̄2δ′(τ)P̄
1
E2

+O(
h̄3

)
, (8.10)

where

P̄
1
Ek

:= Re
(
G̃(E)

)k =
(−1)k

(k − 1)!
dk−1

dEk−1
P

1
E

(8.11)

is a renormalized principal value4. Integration over τ then
yields

h̄2
(
G̃G̃†)(τ, E) = −2h̄ Im

[
θ

(
τ +

1
2
ih̄∂E

)
G̃(E)

]

= 2πh̄θ(τ)δ(E) + h̄2δ(τ)P̄
1
E2

+O(
h̄3

)
. (8.12)

Comparing (8.10) and (8.12), we can see that ih̄
(
G̃− G̃†),

and so the super-operator N , is instantaneous at lead-
ing order in h̄, whereas h̄2

(
G̃G̃†), or M , is not. The non-

instantaneous piece in M would have been missed if we

4 As a technical remark, note that for fairly general test func-
tion spaces, the principal value of 1/x is well defined as a distri-
bution, thus, unlike P (1/xk), the construction P̄ (1/xk) is also
a well-defined distribution for k = 2, 3, . . . (finite when applied
to test functions) since the derivative of a distribution is again
a distribution, defined through by-parts integration [60,61].

had taken a formal classical limit neglecting the terms
± 1

2ω in h̄2
(
G̃G̃†). This is incorrect because the divergence

at the on-shell pole is not integrable. Correspondingly, as
we will see subsequently, the non-instantaneous piece con-
tributes only to real pions and not to virtual ones. Sub-
stituting in eq. (8.7),

ρ(1)(t, E) = 2πh̄δ(E − Ē)

×
(
2πh̄δ(Ē)∂−1

t + h̄2 1
Ē2

+O(h̄3)
)
f0(t), (8.13)

where ∂−1
t =

∫ t

−∞ dt, and the symbol P̄ is implicit. We

can see now what f1, ρ
(1)
R and ρ(1)

V look like. Recalling

b =
∫

dE
2πh̄

, (8.14a)

a(k) = ih̄
[
G̃− G̃†]inst.(τ, E)

= 2πh̄δ(E)δ(τ), k �= 0, (8.14b)

where in a(k) only the instantaneous part should be taken
due to the missing ±ωπ/2 in (7.20), we have (presently
a(k) acts by convolution over τ)

f1(t)=
(
2πh̄δ(Ē)∂−1

t +h̄2 1
Ē2

+O(
h̄3

))
f0(t), (8.15a)

ρ
(1)
R (t, E)=2πh̄δ(E)

(
2πh̄δ(Ē)∂−1

t

+h̄2 1
Ē2

+O(h̄3)
)
f0(t), (8.15b)

ρ
(1)
V (t, E)=2πh̄3 1

Ē2

(
δ(E − Ē)− δ(E)

)
f0(t)

+O(h̄4). (8.15c)

We can see that in ρ(1)
R (t) the pions are on-shell, E = 0,

and also that it contains a piece, that with ∂−1
t f0, which

depends on the whole previous history of the incoming
pions, i.e., ρ(1)

R (t) contains long-lasting components indi-
cating that the real pion at t could be produced from
a quasi-elastic step which occurred some time ago. On
the other hand, ρ(1)

V does not contain such components;
the number of virtual pions depends on the instantaneous
number of incoming pions indicating that the virtual pions
are short-living states.

Now we can easily compute absorption and quasi-
elastic rates. Q(1,0) will follow from

Q(1,0)f0(t) =
∫

dE
2πh̄

dτih̄
(
G̃− G̃†)(τ, E)

×2πh̄δ(E − Ē)f0(t− τ)

=
(
2πh̄δ(Ē) +O(

h̄2
))
f0(t), (8.16)
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Fig. 7. a) Two-body quasi-elastic. b) Three-body absorption.

which coincides with (8.2). Analogously, A(2,1) and A(2,0)

A(2,1)f1 = Pa(1)f1 =
∫

dE
2πh̄

×2πh̄δ(E − EA)ρ(1)
R (t, E), (8.17a)

A(2,0)f0 = Pρ
(1)
V =

∫
dE
2πh̄

×2πh̄δ(E − EA)ρ(1)
V (t, E), (8.17b)

where EA := Hph(p)−H(π)
0 (p) (see fig. 6b). Using the ex-

pressions in (8.15) and the fact that EA �= 0, as discussed
for A(1,0), we get

A(2,1) = 0, (8.18a)

A(2,0)f0(t) = 2πh̄3 1
Ē2
δ(EA − Ē)f0(t) +O(h̄5). (8.18b)

Q(1,0) and A(2,0) are then the lowest-order quasi-elastic
and absorption mechanisms. Both are positive definite
(P̄ 1

Ē2 is positive outside the pole)5.
To display further features of the present scheme

we shall study the coefficients Q(2,0) and A(3,0). Again
schematically

Q(2,1)f1(t) =
∫

dE′

2πh̄
dτ ′

dE
2πh̄

ih̄
(
G̃− G̃†

)
(τ ′, E′)

×2πh̄δ(E − E′ + Ē′)ρ(1)
R (t− τ ′, E)

=
(
2πh̄δ(Ē′) +O(

h̄2
))
f1(t), (8.19)

where E′ = E′
π − H

(π)
0 (p′), Ē′ = H

(π)
0 (p) − H

(π)
0 (p′) −

Hph(q′) (see fig. 7a).

5 Using Eπ ± 1
2
ωπ as arguments in the pion propagator in

eq. (7.20) (in frequency representation), would introduce fur-
ther terms in the definition of a(k), (as in (8.10)) compared

to (8.14b)). With this alternative definition ρ
(1)
R (t, E) would no

longer be proportional to δ(E) and, as a consequence, A(2,1)

would not vanish and A(2,0) would not be positive at leading
order (their sum, however, would not change).

Q(2,0) is obtained by taking ρ
(1)
V instead of ρ

(1)
R ,

in (8.19):

Q(2,0)f0(t) = 2πh̄3 1
Ē2

(
δ(Ē′ + Ē) − δ(Ē′)

)
f0(t)

+O(h̄4). (8.20)

Note first that Q(2,1) = Q(1,0), at least at leading order.
In general Q(k+s,s) = Q(k,0) would be most desirable, but
given the asymmetry in the definitions of a(k =0), and a(0)

it might not be true for higher orders in h̄. Secondly, note
that Q(2,0) is not positive definite. This is a consequence
of eq. (7.5b), and it was expected because it is the first
quantum correction to the quasi-elastic. Indeed

Q(2,1)f1(t)=2πh̄δ(Ē′)2πh̄δ(Ē)∂−1
t f0(t) +O(h̄3), (8.21)

which shows that effectively Q(2,0) ≈ h̄Q(2,1). It is also
interesting that as Ē → 0 in (8.20) and the intermediate
pion (line p in fig. 7a) approaches its mass-shell, the two δ-
functions cancel: this is the effect of subtracting real pions
from ρ(1). Then, even if the P̄ 1

Ē2 distribution were not

already renormalized and finite6 the subtraction ρ(1)−ρ(1)
R

will produce a finite result.
Similarly for absorption:

A(3,1)f1 =
∫

dE′

2πh̄
2πh̄δ(E′ − E′

A)ρ(2)
VR, (8.22a)

A(3,0)f0 =
∫

dE′

2πh̄
2πh̄δ(E′ − E′

A)ρ(2)
VV, (8.22b)

with E′
A = Hph(p′) −H

(π)
0 (p′) �= 0 (see fig. 7b), and the

result

A(3,1)f1(t)=2πh̄3 1
Ē′2 δ(E

′
A−Ē′)f1(t)+O(h̄4), (8.23a)

A(3,0)f0(t)=2πh̄
h̄2

E′2
A

h̄2

Ē2

(
δ(E′

A − Ē′ − Ē)

−δ(E′
A − Ē′)

)
f0(t) +O(h̄7). (8.23b)

Once again A(3,1) = A(2,0), also A(3,0) is not positive and
the δ’s cancel as Ē → 0. Furthermore, in both cases Q(2,0)

and A(3,0) average to zero (as functions of Ē′), again a
direct consequence of (7.5b). Although after momentum
integration Q(2,0) and A(3,0) will not be zero, they will be
small. In our formalism this is reflected in the fact that
both have higher-order powers of h̄. Remember that h̄→ 0
should be understood as a physical limit: it is not h̄ that
is small, rather the coefficients with higher orders of h̄ are
smaller if the classical limit applies.

Even though Q(2,0) and A(3,0) involve the propagation
of intermediate (virtual) pions, both rates are instanta-
neous in leading order implying that such states last a
short time. A more detailed treatment equally shows that
they run a short distance, i.e., Q and A are local at leading
order.

6 This is the case when Cutkosky rules [37] are directly ap-
plied in nuclear matter.
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9 Summary and conclusions

In the previous sections we have reduced a complex many-
body evolution equation to something more similar to the
master equation of the cascade approach (1.3). The task
has been that of rewriting the Schrödinger equation and,
more importantly, that of removing the unwanted degrees
of freedom, namely, the ph and the virtual-pion degrees of
freedom, which are not present in the cascade-like calcula-
tion of ref. [24]. We have then obtained a set of equations
for the pionic matrix density, eqs. (7.16), in which a clas-
sical expansion can be made naturally.

We have started by formulating the relation between
the S-matrix and cross-section in the phase space ap-
proach, (2.13), then we have shown that the analogous
relation can be written using directly the evolution opera-
tor, (2.21). This relation is closer to a cascade model since
the simulation is set just to provide the transition prob-
ability from an initial point in phase space to any other
point at large later times. Both in quantum-mechanical
calculations and in cascade methods, the transition prob-
ability (evolution operator) is obtained by solving the as-
sociated differential equation (Schrödinger equation). The
rest of the paper is devoted to compute the input to be
used for that equation. For this input to be useful it has
to be written in a way that connects with cascade calcu-
lations, and we have argued that this suggests to carry
out an expansion around the classical limit. We empha-
size, however, that the validity of the final formulas (6.14)
and (7.16) do not rely on classical-like approximations
(they are not leading-order terms of a classical expansion).
They are translations of fully quantum-mechanical rela-
tions, reformulated in a phase space form with the help of
the Wigner transformation. (Nevertheless, we recall that
these formulas do not implement indistinguishability of
the ph and this can be regarded as a classical-like fea-
ture.)

In sects. 3 and 4 we have introduced the necessary
formalism related to the Wigner formulation. The phase
space (space momentum) part of this formulation has been
exploited already by various authors in the literature even
in the specific subject of quantum scattering [38–41]. The
relevance of the time energy form of the Wigner transfor-
mation for many-body problems is noted in sect. 4 for the
elastic channel and in sect. 5 for inelastic channels (within
a simplified model). This form is used ubiquitously later
in the paper. In sects. 6 and 7 we have introduced the
necessary definitions of the matrix densities until we have
pinned down the quantity, f̂ in (7.2), that can naturally
be identified with the density of particles described by a
cascade-like method and we have also derived the evolu-
tion equations satisfied by this quantity, (7.15). (We note
that the validity of these evolution equations holds re-
gardless of the interpretation given to f̂ .) At the same
time, we have systematically studied the classical limit of
the main formulas to verify their consistency and intu-
itive meaning, besides, is also within a classical expansion
where they can be simple enough to be of any utility. The
classical-like expansion of (7.16) has been pursued further

in sect. 8 to isolate the leading contributions to the N -
body quasi-elastic and absorption mechanisms.

Among the conclusions of this study we note:
1. The separation of the pion “width” in the nucleus

into a quasi-elastic one plus an absorptive one, is achieved
by means of the Cutkosky rules [24,53] in the diagram-
matic approach. Here, we have already been working with
the imaginary parts of the propagators from the very be-
ginning and with its different analytical cuts, so that no
further separation is needed.

2. We have been able to give a meaning to the concept
of effective N -body quasi-elastic and absorption probabil-
ities. (However, beyond lowest orders in h̄ the prescrip-
tion is not unique: different choices of a(k) in eq. (7.20)
could have been taken.) In particular, an explicit answer
is given to the problem of distinguishing three-body ab-
sorption from a quasi-elastic step followed by two-body ab-
sorption. The “genuine” three-body absorption is given by
A(3,0) in (8.23b), whereas the quasi-elastic one followed by
two-body absorption is described by Q(1,0) in (8.16) and
A(3,1) in (8.23a). The rule to obtain A(3,0) is essentially
to subtract A(3,1) from the full calculation of π → (ph)3
obtained through a proper Feynman diagrammatic calcu-
lation. In practice this is done by computing the relevant
pion self-energy graphs and then applying Cutkosky rules
to pick up the imaginary part, corresponding to putting
the final particles on their mass shell. The procedure of
separation is further discussed in greater detail in [53].

3. Higher-order effective quasi-elastic and absorption
probabilities are quantum corrections to lowest orders and
they are not positive definite. This is a direct consequence
of unitarity (conservation of number of thrown pions mi-
nus absorbed pions). A weaker condition, namely, unitar-
ity for large times only, would be enough but it would
require quantum interference which is prohibitive in a sim-
ulation. It is important to note that in physical cases the
genuine three-body absorption is by far dominated by the
collision of the pion with three nucleons which exchange
heavier mesons, rather than by exchanging far off-shell
pions. As this heavy mesons are necessarily virtual, the
subtractions discussed here have no effect and their con-
tribution is positive definite, very much the same as in the
two-body absorption A(2,0) of our model [53]. As a mat-
ter of principle, the problem of negative probabilities can
be handled by the known method of assigning weights
to the particles as they cascade, in this case a negative
weight. Unfortunately, this method introduces large sta-
tistical fluctuations. (This is the ubiquitous negative-sign
problem in quantum simulations [54–56]) As noted, the
concrete choice of a(k) in (7.15) cannot change the result
if computed to all orders (although it may affect the rate
of convergence of the expansion). Perhaps this ambiguity
can be used for reducing the importance of the negative
regions in the higher-order quasi-elastic and absorptions
rates.

4. Nuclear matter and the local density prescription
appear naturally in this scheme. Because the effective re-
action rates comes about by integrating virtual degrees of
freedom, which are quasi-local, the nuclear-matter calcula-
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tion results as the leading order in a semi-classical expan-
sion. However, one of the results of the study in ref. [24] is
that it is important to take into account the finite range of
the pion-nucleon interaction which is p-wave. This appears
in our scheme only at higher than leading terms in h̄.

5. Indistinguishability of particles has not been imple-
mented in this scheme. This may or may not be more
than a technical problem. It is certainly a quantum effect.
(See [57] for the use of the Wigner transformation for an
optimal treatment of the Bose symmetry of pions.) We
have chosen to remove the ph’s and follow only the pions
as they cascade through the nucleus. It should be possi-
ble to do a treatment without this removal, that is, with
explicit ph’s (of course, the virtual ph’s still have to be in-
tegrated out). Perhaps this could have some incidence on
the problem related to the missing crossed graphs. In the
context transport equations, the problem of antisymmetry
of nucleons has been successfully addressed in extensions
of quantum-molecular dynamics [58,59].

6. Although with pion-nucleus scattering in mind, the
scheme is more general and could be of interest for other
problems currently dealt with by Monte Carlo simulation
methods. Furthermore, the scheme is exemplified with a
simple model, but the final equations involve Green’s func-
tions which exist in any quantum many-body theory.
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the manuscript and the Center for Theoretical Physics of the
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work was carried out some years ago. This work is supported
in part by funds provided by the Spanish DGICYT grant no.
PB98-1367 and Junta de Andalućıa grant no. FQM-225.

Appendix A.

Let us prove eq. (2.10) for any free Hamiltonian of the form
Ĥ0 = Ĥ0(p). From the definition of Ŝ we have [Ĥ0, Ŝ] = 0,
then for any ρ̂

e−itĤ0/h̄Ŝρ̂Ŝ† eitĤ0/h̄ = Ŝ e−itĤ0/h̄ρ̂ eitĤ0/h̄Ŝ†. (A.1)

In Wigner’s form, it implies

∫
d3q d3y

(2πh̄)3
eiq(x′−y)/h̄−it∆H(q,p′)/h̄S(y,p′;x,p) =∫

d3q d3y

(2πh̄)3
S(x′,p′;y,p)eiq(y−x)/h̄−it∆H(q,p)/h̄ (A.2)

with ∆H(q,p) = H0(p + 1
2q) − H0(p − 1

2q). Upon inte-
gration over x′ and b, we have∫

d2bd3x′S(x′,p′; b + x‖,p) =∫
d3x′ d2b

dq‖ dy‖
2πh̄

S(x′,p′; b + y‖,p)

×eiq‖(y‖−x‖)/h̄−it∆H(q‖,p)/h̄ (A.3)

for large t only small values of ∆H can survive, and ∆H
can be approximated by v(p) · q‖ with v the classical ve-
locity. Then the q‖ integration gives y‖ = x‖ + vt. But
the left-hand side does not depend on t, then it can-
not depend on x‖ either (unless v = 0, for which case
there is no scattering at all). More technically, applying∫

dteiωt dx‖e
−iq′

‖·x‖ on both sides of (A.3), we have

0 =
{
δ(ω)− δ

(
ω −∆H(q‖,p)

)} ∫
dx‖ e−iq‖·x‖

×
∫

d2bd3x′S
(
x′,p′; b + x‖,p

)
, (A.4)

which implies (2.10) for p �= 0.

Appendix B.

We want to prove eqs. (6.5) and (6.6). By iterating
eq. (6.6) towards lower k, the state |Eπ, E1, · · · , Ek〉k must
be given by

|Eπ, E1, . . . , Ek〉k
=

[
ih̄Ĝ(k)

π (Eπ)ih̄Ĝ
(k)
ph (Ek)

1
ih̄
F̂ †

]

×
[
ih̄Ĝ(k−1)

π (Eπ + Ek)ih̄Ĝ
(k−1)
ph (Ek−1)

1
ih̄
F̂ †

]
· · ·

· · ·
[
ih̄Ĝ(1)

π (Eπ + Ek + · · · + E2)ih̄Ĝ
(1)
ph (E1)

1
ih̄
F̂ †

]
×|Eπ + E1 + · · · + Ek〉0 (B.1)

and for |E〉0 we choose the state without ph particles,
|0, E〉. To illustrate the method it will be sufficient to prove
eq. (6.5) just for k = 2:

|Eπ, E1, E2〉2 = [ih̄Ĝ(2)
π (Eπ)ih̄Ĝ

(2)
ph (E2)

1
ih̄
F̂ †]

×
[
ih̄Ĝ(1)

π (Eπ+E2)ih̄Ĝ
(1)
ph (E1)

1
ih̄
F̂ †

]
×|Eπ + E1 + E2〉0 (B.2)

|2, E〉′ =
∫

dEπ

2πh̄
dE1

2πh̄
dE2

2πh̄
2πh̄δ

×(E − Eπ − E1 − E2)|Eπ, E1, E2〉2
=

{[
ih̄Ĝ(2)

π ◦ ih̄Ĝ(2)
ph

1
ih̄
F̂ †

]
ih̄Ĝ(1)

π

}

◦ ih̄Ĝ(1)
ph

1
ih̄
F̂ †|E〉0. (B.3)

Using the analytic properties of the propagator, we find

[
ih̄Ĝ(k)

π ◦ ih̄Ĝ(�)
ph

]
(E)= ih̄Ĝ(k)

π

(
E−Ĥ(�)

ph

)
, k≥4, (B.4)
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where Ĥ(�)
ph is the free ph Hamiltonian in the 4-th ph sub-

space. And similarly

({[
ih̄Ĝ(2)

π ◦ ih̄Ĝ(2)
ph

]
ih̄Ĝ(1)

π

}
◦ ih̄Ĝ(1)

ph

)
(E)

= ih̄Ĝ(2)
π

(
E − Ĥ

(1)
ph − Ĥ

(2)
ph

)
ih̄Ĝ(1)

π

(
E − Ĥ

(1)
ph

)
=

[
ih̄Ĝ(2)

π ◦ ih̄Ĝ(1)
ph ◦ ih̄Ĝ(2)

ph

][
ih̄Ĝ(1)

π ◦ ih̄Ĝ(1)
ph

]
(E),

(B.5)

where we have used the fact that Ĝ(k)
π do not contain

operators related to the k′-th ph if k′ ≤ k. This is due
to our assumption that only direct graphs are included in
the propagators. The same steps in (B.5) go through when
the F̂ † operators are in place, as in eq. (B.3), because the
last F̂ † operator and Ĝ

(1)
ph commute: our assumption is

that each time F̂ † creates the latter ph, in this case that
labeled with (2). Then,

|2, E〉′ =
[
ih̄Ĝ(2)

π ◦ ih̄Ĝ(1)
ph ◦ ih̄Ĝ(2)

ph

] 1
ih̄
F̂ †

×
[
ih̄Ĝ(1)

π ◦ ih̄Ĝ(1)
ph

] 1
ih̄
F̂ †|0, E〉 (B.6)

using eq. (6.1),

|2, E〉′ = Ĝ2(E)F̂ †Ĝ1(E)F̂ †|0, E〉 (B.7)

and finally using eq. (5.9)

|2, E〉′ = Ĝ2(E)F̂ †|1, E〉 = |2, E〉, (B.8)

in agreement with eq. (6.5).

Appendix C.

In order to prove eq. (6.11), let us apply the defining op-
erator in eq. (6.9) on the recurrence (6.8):

ρ̂(k)(ωπ, Eπ;E)

= h̄2Ĝ(k)
π

(
Eπ +

1
2
ωπ

)∫
dEk

2πh̄
trph lim

tk→+∞

×
∫

dωk
2πh̄

e−iωktk/h̄Ĝph

(
Ek+

1
2
ωk

)
×F̂ †ρ̂(k−1)(ωπ+ωk, Eπ+Ek;E)

×F̂ Ĝ†
ph

(
Ek − 1

2
ωk

)
Ĝ(k)†
π

(
Eπ − 1

2
ωπ

)
. (C.1)

It is convenient to do a Fourier transformation of ωπ in
order to make explicit the dependence on ωk:

ρ̂(k)(tπ, Eπ;E)

=
∫

dωπ
2πh̄

e−iωπtπ/h̄h̄2Ĝ(k)
π

(
Eπ +

1
2
ωπ

)

×
∫

dEk

2πh̄
trph lim

tk→+∞

×
∫

dωk
2πh̄

e−iωktk/h̄ dt′πe
i(ωπ+ωk)t′π/h̄

×Ĝph

(
Ek+

1
2
ωk

)
F̂ †ρ̂(k−1)(t′π, Eπ+Ek;E)

×F̂ Ĝ†
ph

(
Ek − 1

2
ωk

)
Ĝ(k)†
π

(
Eπ − 1

2
ωπ

)
. (C.2)

The structure of the ωk integral is as follows:

W =
∫

dω
2πh̄

e−iωt/h̄h̄2Ĝph

(
E+

1
2
ω

)
ÂĜ†

ph

(
E−1

2
ω

)
, (C.3)

where ω = ωk, t = tk − t′π, E = Ek and Â do not com-
mute with Ĝph. By using the time representation of the
propagators

ih̄Ĝph(E) =
∫

dtθ(t) eit(E−Ĥph+iη)/h̄ (C.4)

and integrating ω eq. (C.3) becomes

W =
∫

dt1 dt2θ(t1)θ(t2)δ
(
t− t1 + t2

2

)

×eit1(E−Ĥph)/h̄Â e−it2(E−Ĥph)/h̄

=
∫

dτθ
(
t−

∣∣∣∣τ2
∣∣∣∣
)
ei(

τ
2 +t)(E−Ĥph)/h̄

×Â ei( τ
2 −t)(E−Ĥph)/h̄ (C.5)

and using the cyclic property of the trace

lim
t→+∞ trphW = trph 2πh̄δ(E − Ĥph)Â (C.6)

from which eq. (6.11) follows.
Let us now prove eq. (6.12) or equivalently,

∑
k

tr
∫

dEπ

2πh̄
ωπρ̂

(k)(ωπ, Eπ;E) = 0. (C.7)

Our starting point is the Schrödinger equation (6.13).
There the part with Ĥ(k)

π , Ĥ(k)†
π contains the annihilation

of the pion from ρ̂(k), which go to ρ̂(k+1), while the other
part contains the transition k − 1 → k. Then it is enough
to prove that the pions that disappear in ρ̂(k) appear in
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ρ̂(k+1): eq. (C.7) is a consequence of
∫

dEπ

2πh̄
tr

[
Ĥ(k)

π

(
Eπ +

1
2
ωπ

)
ρ̂(k)(ωπ, Eπ;E)

−ρ̂(k)(ωπ, Eπ;E)Ĥ(k)†
π

(
Eπ − 1

2
ωπ

)]

−
∫

dEπ

2πh̄
dE′

π

2πh̄
tr

{
2πh̄δ

(
E′
π − Eπ − Ĥph

)
×

[
Ĝ(k+1)
π

(
Eπ +

1
2
ωπ

)
F̂ †ρ̂(k)(ωπ, E′

π;E)F̂

−F̂ †ρ̂(k)(ωπ, E′
π;E)F̂ Ĝ(k+1)†

π

(
Eπ− 1

2
ωπ

)]}
=0. (C.8)

By using the cyclic property of the trace and exchanging
Eπ, E

′
π in the second part, eq. (C.8) follows from

ih̄
[
Ĝ(k+1)
π ◦ Ĝ(k+1)

ph

](
Eπ +

1
2
ωπ

)

−
∫

dE′
π

2πh̄
2πh̄

(
Eπ − E′

π − Ĥ
(k+1)
ph

)

×Ĝ(k+1)
π

(
E′
π +

1
2
ωπ

)
= 0, (C.9)

which is equivalent to eq. (B.4).

Appendix D.

Here we wish to write the corresponding equations when
an absorption mechanism is included in the model of
eq. (5.2). We simply add a π-ph “vertex” in ĤI,

Ĥπ ph = K̂ + K̂†

=
∫

d3xd3y K(x,y)φ̂†π(x) φ̂ph(y) + h.c. (D.1)

The vertices K̂, K̂† indicate that a pion can transform
into a ph and vice versa. Combined with quasi-elastic,
this implies that even if we start with one pion, time evo-
lution will produce states with no pions, and states with
many pions. Below the threshold this many-pion (more
than one pion) states can only be virtual and the expo-
sition is greatly simplified by not considering them. The
equations generalizing (5.6) are

E
∣∣π(ph)k〉 = Ĥ0

∣∣π(ph)k〉 + F̂ †∣∣π(ph)k−1
〉

+F̂
∣∣π(ph)k+1

〉
+ K̂

∣∣(ph)k+1
〉
,

E
∣∣(ph)k〉 = Ĥ0

∣∣(ph)k〉 + K̂†∣∣π(ph)k−1
〉
. (D.2)

By following the same steps as before, and again keeping
only direct graphs, it can be seen that all the formulae re-
lated to states |π(ph)k〉 remain unchanged, except (6.4b):

Ĥ(k)
π = ih̄F̂

[
Ĝ(k+1)
π ◦ Ĝ(k+1)

ph

]
F̂ † + K̂ G

(k+1)
ph K̂†, (D.3)

the pionic Hamiltonian now contains ph’s as self-energy. In
this sense, the |π(ph)k〉 states are autonomous, however,
they act as a source for |(ph)k+1〉 states:

ρ̂
(k)
A (ωk, Ek;E) = Ĝph

(
Ek +

1
2
ωk

)
K̂†ρ̂(k−1)

×(ωk, Ek;E)K̂Ĝ†
ph

(
Ek− 1

2
ωk

)
, (D.4)

where ρ̂(k)
A contains the degrees of freedom of the k-th ph

only (recall that the other k − 1 ph’s are traced in ρ̂(k−1)

which is purely pionic, and we include direct graphs only).
As usual, we can write an evolution equation for ρ̂A, by
computing Ĝ−1

ph ρ̂A − ρ̂AĜ
†−1
ph . Again taking trace over ph

and integrating out Ek, we obtain (using the trace cyclic
property)

ih̄∂tN
(k)
A (t, E) = tr

∫
dEk

2πh̄
dωk
2πh̄

dt′e−iωk(t−t′)/h̄

×K̂†ρ̂(k−1)(t′, Ek;E)

×K̂
(
Ĝ†

ph

(
Ek − 1

2
ωk

)
− Ĝph

(
Ek +

1
2
ωk

))
, (D.5)

where N
(k)
A (t, E) =

∫
dEk/2πh̄ tr ρ̂(k)

A (t, Ek;E) denotes
the number of pions absorbed by k ph until time t. The
total number of pions absorbed is obtained by integrating
over t both sides of (D.5)

ih̄N
(k)
A (∞, E) =

∫
dt tr

∫
dEk

2πh̄
K̂†ρ̂(k−1)(t, Ek;E)

×K̂2πiδ
(
Ek − Ĥph

)
, (D.6)

from which we read off the effective absorption rate

ih̄∂tN
(k)
A (t, E) = tr

∫
dEπ

2πh̄
K̂†ρ̂(k−1)(t, Ek;E)

×K̂2πiδ
(
Ek − Ĥph

)
. (D.7)

The difference between the exact, (D.5), and the effec-
tive, (D.7), absorption rates are due to quantum fluctu-
ations which do not contribute to the final cross-section.
The simplification occurs because the ph’s are not allowed
to further interact after their creation in a quasi-elastic
step, and so they can directly be taken on their mass shell
(as comes out of the formula). For pions such a simple
result does not follow because the pions may always have
further quasi-elastic (or absorption) steps.

Note the odd counting in powers of h̄ in eq. (D.7).
However, the limit h̄ → 0 will be meaningful assuming
that K̂ is of order h̄. The reason for this is that actually the
ph state is not elementary, as in our model, but rather it
is formed by a nucleon and its hole, and as a consequence
the field φ̂ph(x) is composite containing one loop which
gives a h̄ factor to K̂.

The equation similar to (7.9b) will be

∂tNA = Pρ, (D.8)



94 The European Physical Journal A

where the superoperator P is given in (D.7), and the equa-
tion similar to (7.15) for absorption is

∂tNA = P (1− PVM)−1af := Af. (D.9)

Paralleling the case of quasi-elastic, this formula indicates
that after integration of virtual pions there will be effective
N -body absorption mechanisms A(k,k′) for the real pions.
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